DPconv: Super-Polynomially Faster Join Ordering

Mihail Stoian, Andreas Kipf
{"title":"DPconv: Super-Polynomially Faster Join Ordering","authors":"Mihail Stoian, Andreas Kipf","doi":"arxiv-2409.08013","DOIUrl":null,"url":null,"abstract":"We revisit the join ordering problem in query optimization. The standard\nexact algorithm, DPccp, has a worst-case running time of $O(3^n)$. This is\nprohibitively expensive for large queries, which are not that uncommon anymore.\nWe develop a new algorithmic framework based on subset convolution. DPconv\nachieves a super-polynomial speedup over DPccp, breaking the $O(3^n)$\ntime-barrier for the first time. We show that the instantiation of our\nframework for the $C_\\max$ cost function is up to 30x faster than DPccp for\nlarge clique queries.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We revisit the join ordering problem in query optimization. The standard exact algorithm, DPccp, has a worst-case running time of $O(3^n)$. This is prohibitively expensive for large queries, which are not that uncommon anymore. We develop a new algorithmic framework based on subset convolution. DPconv achieves a super-polynomial speedup over DPccp, breaking the $O(3^n)$ time-barrier for the first time. We show that the instantiation of our framework for the $C_\max$ cost function is up to 30x faster than DPccp for large clique queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DPconv:超快连接排序
我们重温了查询优化中的连接排序问题。标准精确算法 DPccp 的最坏运行时间为 $O(3^n)$。这对于大型查询来说昂贵得令人望而却步,而大型查询已不再罕见。我们开发了一种基于子集卷积的新算法框架。我们开发了基于子集卷积的新算法框架。与 DPccp 相比,DPconv 实现了超多项式提速,首次突破了 $O(3^n)$ 时间障碍。我们展示了我们的框架在$C_\max$成本函数上的实例化,在大型clique查询上比DPccp快了30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1