Towards Privacy-Preserving Relational Data Synthesis via Probabilistic Relational Models

Malte Luttermann, Ralf Möller, Mattis Hartwig
{"title":"Towards Privacy-Preserving Relational Data Synthesis via Probabilistic Relational Models","authors":"Malte Luttermann, Ralf Möller, Mattis Hartwig","doi":"arxiv-2409.04194","DOIUrl":null,"url":null,"abstract":"Probabilistic relational models provide a well-established formalism to\ncombine first-order logic and probabilistic models, thereby allowing to\nrepresent relationships between objects in a relational domain. At the same\ntime, the field of artificial intelligence requires increasingly large amounts\nof relational training data for various machine learning tasks. Collecting\nreal-world data, however, is often challenging due to privacy concerns, data\nprotection regulations, high costs, and so on. To mitigate these challenges,\nthe generation of synthetic data is a promising approach. In this paper, we\nsolve the problem of generating synthetic relational data via probabilistic\nrelational models. In particular, we propose a fully-fledged pipeline to go\nfrom relational database to probabilistic relational model, which can then be\nused to sample new synthetic relational data points from its underlying\nprobability distribution. As part of our proposed pipeline, we introduce a\nlearning algorithm to construct a probabilistic relational model from a given\nrelational database.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic relational models provide a well-established formalism to combine first-order logic and probabilistic models, thereby allowing to represent relationships between objects in a relational domain. At the same time, the field of artificial intelligence requires increasingly large amounts of relational training data for various machine learning tasks. Collecting real-world data, however, is often challenging due to privacy concerns, data protection regulations, high costs, and so on. To mitigate these challenges, the generation of synthetic data is a promising approach. In this paper, we solve the problem of generating synthetic relational data via probabilistic relational models. In particular, we propose a fully-fledged pipeline to go from relational database to probabilistic relational model, which can then be used to sample new synthetic relational data points from its underlying probability distribution. As part of our proposed pipeline, we introduce a learning algorithm to construct a probabilistic relational model from a given relational database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过概率关系模型实现保护隐私的关系数据合成
概率关系模型是将一阶逻辑和概率模型结合起来的一种成熟的形式主义,从而可以表示关系域中对象之间的关系。与此同时,人工智能领域需要越来越多的关系训练数据来完成各种机器学习任务。然而,由于隐私问题、数据保护法规、高昂的成本等原因,收集真实世界的数据往往具有挑战性。为了缓解这些挑战,生成合成数据是一种很有前景的方法。在本文中,我们将解决通过概率关系模型生成合成关系数据的问题。特别是,我们提出了一个从关系数据库到概率关系模型的完整流水线,该流水线可用于从底层概率分布中采样新的合成关系数据点。作为建议管道的一部分,我们引入了一种学习算法,用于从给定的关系数据库构建概率关系模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1