Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation

Yihang Zheng, Bo Li, Zhenghao Lin, Yi Luo, Xuanhe Zhou, Chen Lin, Jinsong Su, Guoliang Li, Shifu Li
{"title":"Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation","authors":"Yihang Zheng, Bo Li, Zhenghao Lin, Yi Luo, Xuanhe Zhou, Chen Lin, Jinsong Su, Guoliang Li, Shifu Li","doi":"arxiv-2409.04475","DOIUrl":null,"url":null,"abstract":"The development of Large Language Models (LLMs) has revolutionized Q&A across\nvarious industries, including the database domain. However, there is still a\nlack of a comprehensive benchmark to evaluate the capabilities of different\nLLMs and their modular components in database Q&A. To this end, we introduce\nDQA, the first comprehensive database Q&A benchmark. DQA features an innovative\nLLM-based method for automating the generation, cleaning, and rewriting of\ndatabase Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These\nQ&A pairs cover nearly all aspects of database knowledge, including database\nmanuals, database blogs, and database tools. This inclusion allows for\nadditional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool\nInvocation Generation (TIG) capabilities in the database Q&A task. Furthermore,\nwe propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed\nis highly modular and scalable, with both basic and advanced components like\nQuestion Classification Routing (QCR), RAG, TIG, and Prompt Template\nEngineering (PTE). Besides, DQA provides a complete evaluation pipeline,\nfeaturing diverse metrics and a standardized evaluation process to ensure\ncomprehensiveness, accuracy, and fairness. We use DQA to evaluate the database\nQ&A capabilities under the proposed testbed comprehensively. The evaluation\nreveals findings like (i) the strengths and limitations of nine different\nLLM-based Q&A bots and (ii) the performance impact and potential improvements\nof various service components (e.g., QCR, RAG, TIG). We hope our benchmark and\nfindings will better guide the future development of LLM-based database Q&A\nresearch.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of Large Language Models (LLMs) has revolutionized Q&A across various industries, including the database domain. However, there is still a lack of a comprehensive benchmark to evaluate the capabilities of different LLMs and their modular components in database Q&A. To this end, we introduce DQA, the first comprehensive database Q&A benchmark. DQA features an innovative LLM-based method for automating the generation, cleaning, and rewriting of database Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These Q&A pairs cover nearly all aspects of database knowledge, including database manuals, database blogs, and database tools. This inclusion allows for additional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool Invocation Generation (TIG) capabilities in the database Q&A task. Furthermore, we propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed is highly modular and scalable, with both basic and advanced components like Question Classification Routing (QCR), RAG, TIG, and Prompt Template Engineering (PTE). Besides, DQA provides a complete evaluation pipeline, featuring diverse metrics and a standardized evaluation process to ensure comprehensiveness, accuracy, and fairness. We use DQA to evaluate the database Q&A capabilities under the proposed testbed comprehensively. The evaluation reveals findings like (i) the strengths and limitations of nine different LLM-based Q&A bots and (ii) the performance impact and potential improvements of various service components (e.g., QCR, RAG, TIG). We hope our benchmark and findings will better guide the future development of LLM-based database Q&A research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大型语言模型革新数据库问答:综合基准和评估
大语言模型(LLMs)的发展给包括数据库领域在内的各行各业的问答带来了革命性的变化。然而,目前仍然缺乏一个全面的基准来评估不同 LLM 及其模块化组件在数据库问答中的能力。为此,我们推出了第一个全面的数据库问答基准--DQA。DQA 采用基于LLM 的创新方法自动生成、清理和改写数据库问答,产生了 240,000 多个中英文问答对。这些问答几乎涵盖了数据库知识的所有方面,包括数据库手册、数据库博客和数据库工具。这样就可以对 LLM 在数据库问答任务中的检索增强生成(RAG)和工具调用生成(TIG)能力进行额外的评估。此外,我们还在 DQA 上提出了一个基于 LLM 的综合数据库问答测试平台。该测试平台具有高度的模块化和可扩展性,既有基本组件,也有高级组件,如问题分类路由(QCR)、RAG、TIG和提示模板工程(PTE)。此外,DQA 还提供了完整的评估管道,具有多样化的指标和标准化的评估流程,以确保评估的全面性、准确性和公平性。我们使用 DQA 全面评估了拟议测试平台下的数据库 Q&A 能力。评估揭示了以下结论:(i) 九种不同的基于 LLM 的问答机器人的优势和局限性;(ii) 各种服务组件(如 QCR、RAG、TIG)的性能影响和潜在改进。我们希望我们的基准和发现能够更好地指导基于 LLM 的数据库问答研究的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1