Updateable Data-Driven Cardinality Estimator with Bounded Q-error

Yingze Li, Xianglong Liu, Hongzhi Wang, Kaixin Zhang, Zixuan Wang
{"title":"Updateable Data-Driven Cardinality Estimator with Bounded Q-error","authors":"Yingze Li, Xianglong Liu, Hongzhi Wang, Kaixin Zhang, Zixuan Wang","doi":"arxiv-2408.17209","DOIUrl":null,"url":null,"abstract":"Modern Cardinality Estimators struggle with data updates. This research\ntackles this challenge within single-table. We introduce ICE, an Index-based\nCardinality Estimator, the first data-driven estimator that enables instant,\ntuple-leveled updates. ICE has learned two key lessons from the multidimensional index and applied\nthem to solve cardinality estimation in dynamic scenarios: (1) Index possesses\nthe capability for swift training and seamless updating amidst vast\nmultidimensional data. (2) Index offers precise data distribution, staying\nsynchronized with the latest database version. These insights endow the index\nwith the ability to be a highly accurate, data-driven model that rapidly adapts\nto data updates and is resilient to out-of-distribution challenges during query\ntesting. To make a solitary index support cardinality estimation, we have\ncrafted sophisticated algorithms for training, updating, and estimating,\nanalyzing unbiasedness and variance. Extensive experiments demonstrate the superiority of ICE. ICE offers precise\nestimations and fast updates/construction across diverse workloads. Compared to\nstate-of-the-art real-time query-driven models, ICE boasts superior accuracy\n(2-3 orders of magnitude more precise), faster updates (4.7-6.9 times faster),\nand significantly reduced training time (up to 1-3 orders of magnitude faster).","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern Cardinality Estimators struggle with data updates. This research tackles this challenge within single-table. We introduce ICE, an Index-based Cardinality Estimator, the first data-driven estimator that enables instant, tuple-leveled updates. ICE has learned two key lessons from the multidimensional index and applied them to solve cardinality estimation in dynamic scenarios: (1) Index possesses the capability for swift training and seamless updating amidst vast multidimensional data. (2) Index offers precise data distribution, staying synchronized with the latest database version. These insights endow the index with the ability to be a highly accurate, data-driven model that rapidly adapts to data updates and is resilient to out-of-distribution challenges during query testing. To make a solitary index support cardinality estimation, we have crafted sophisticated algorithms for training, updating, and estimating, analyzing unbiasedness and variance. Extensive experiments demonstrate the superiority of ICE. ICE offers precise estimations and fast updates/construction across diverse workloads. Compared to state-of-the-art real-time query-driven models, ICE boasts superior accuracy (2-3 orders of magnitude more precise), faster updates (4.7-6.9 times faster), and significantly reduced training time (up to 1-3 orders of magnitude faster).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有有界 Q 误差的可更新数据驱动卡方估计器
现代 Cardinality Estimators 难以应对数据更新。本研究在单表中解决了这一难题。我们介绍了基于索引的卡合性估计器 ICE,它是首个能实现即时元组级更新的数据驱动估计器。ICE 从多维索引中汲取了两条关键经验,并将它们应用于解决动态场景中的卡合性估计问题:(1) 索引具有在庞大的多维数据中进行快速训练和无缝更新的能力。(2) 索引提供精确的数据分布,与最新的数据库版本保持同步。这些洞察力赋予了索引高精确度、数据驱动型模型的能力,使其能够快速适应数据更新,并在查询测试过程中抵御超出分布范围的挑战。为了使单个索引支持万有引力估计,我们开发了用于训练、更新和估计、分析无偏性和方差的复杂算法。广泛的实验证明了 ICE 的优越性。在不同的工作负载中,ICE 都能提供精确的估计和快速的更新/构建。与最先进的实时查询驱动模型相比,ICE 拥有更高的精确度(精确度提高了 2-3 个数量级)、更快的更新速度(快 4.7-6.9 倍)以及显著缩短的训练时间(快 1-3 个数量级)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1