LLM-assisted Labeling Function Generation for Semantic Type Detection

Chenjie Li, Dan Zhang, Jin Wang
{"title":"LLM-assisted Labeling Function Generation for Semantic Type Detection","authors":"Chenjie Li, Dan Zhang, Jin Wang","doi":"arxiv-2408.16173","DOIUrl":null,"url":null,"abstract":"Detecting semantic types of columns in data lake tables is an important\napplication. A key bottleneck in semantic type detection is the availability of\nhuman annotation due to the inherent complexity of data lakes. In this paper,\nwe propose using programmatic weak supervision to assist in annotating the\ntraining data for semantic type detection by leveraging labeling functions. One\nchallenge in this process is the difficulty of manually writing labeling\nfunctions due to the large volume and low quality of the data lake table\ndatasets. To address this issue, we explore employing Large Language Models\n(LLMs) for labeling function generation and introduce several prompt\nengineering strategies for this purpose. We conduct experiments on real-world\nweb table datasets. Based on the initial results, we perform extensive analysis\nand provide empirical insights and future directions for researchers in this\nfield.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting semantic types of columns in data lake tables is an important application. A key bottleneck in semantic type detection is the availability of human annotation due to the inherent complexity of data lakes. In this paper, we propose using programmatic weak supervision to assist in annotating the training data for semantic type detection by leveraging labeling functions. One challenge in this process is the difficulty of manually writing labeling functions due to the large volume and low quality of the data lake table datasets. To address this issue, we explore employing Large Language Models (LLMs) for labeling function generation and introduce several prompt engineering strategies for this purpose. We conduct experiments on real-world web table datasets. Based on the initial results, we perform extensive analysis and provide empirical insights and future directions for researchers in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于语义类型检测的 LLM 辅助标记功能生成
检测数据湖表格中列的语义类型是一项重要应用。由于数据湖固有的复杂性,语义类型检测的一个关键瓶颈是人工标注的可用性。在本文中,我们建议使用程序化弱监督,利用标注函数来协助注释语义类型检测的训练数据。这一过程中的一个挑战是,由于数据湖标签集数量大、质量低,人工编写标签函数非常困难。为了解决这个问题,我们探索了利用大型语言模型(LLM)生成标签函数的方法,并为此引入了几种提示工程策略。我们在真实世界的网络表格数据集上进行了实验。在初步结果的基础上,我们进行了广泛的分析,并为该领域的研究人员提供了经验见解和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1