Boron Surface Treatment of Li7La3Zr2O12 Enabling Solid Composite Electrolytes for Li‐metal Battery Applications

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-09-12 DOI:10.1002/cssc.202401304
Ignacio Cuevas, Kenza Elbouazzaoui, Jonas Mindemark, Mario Valvo, Daniel Brandell, Kristina Edström
{"title":"Boron Surface Treatment of Li7La3Zr2O12 Enabling Solid Composite Electrolytes for Li‐metal Battery Applications","authors":"Ignacio Cuevas, Kenza Elbouazzaoui, Jonas Mindemark, Mario Valvo, Daniel Brandell, Kristina Edström","doi":"10.1002/cssc.202401304","DOIUrl":null,"url":null,"abstract":"Despite being promoted as a superior Li‐ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer–ceramic solid electrolytes for rechargeable all‐solid‐state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li‐ion transport at the polymer–ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that an surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt.% of boron‐treated LLZO particles compared to the analogous CPE with non‐treated LLZO. Ultimately, an improved cycling performance and stability in Li // LiFePO4 cells was also demonstrated for the modified material.","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401304","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite being promoted as a superior Li‐ion conductor, lithium lanthanum zirconium oxide (LLZO) still suffers from a number of shortcomings when employed as an active ceramic filler in composite polymer–ceramic solid electrolytes for rechargeable all‐solid‐state lithium metal batteries. One of the main limitations is the detrimental presence of Li2CO3 on the surface of LLZO particles, restricting Li‐ion transport at the polymer–ceramic interfaces. In this work, a facile way to improve this interface is presented, by purposely engineering the LLZO particle surfaces for better compatibility with a PEO:LiTFSI solid polymer electrolyte matrix. It is shown that an surface treatment based on immersing LLZO particles in a boric acid solution can improve the LLZO surface chemistry, resulting in an enhancement in the ionic conductivity and cation transference number of the CPE with 20 wt.% of boron‐treated LLZO particles compared to the analogous CPE with non‐treated LLZO. Ultimately, an improved cycling performance and stability in Li // LiFePO4 cells was also demonstrated for the modified material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 Li7La3Zr2O12 进行硼表面处理,为锂金属电池应用提供固体复合电解质
尽管锂镧氧化锆(LLZO)被宣传为一种优异的锂离子导体,但在用作可充电全固态锂金属电池的聚合物-陶瓷复合固态电解质的活性陶瓷填料时,它仍然存在许多缺点。其中一个主要限制是 LLZO 颗粒表面存在有害的 Li2CO3,从而限制了锂离子在聚合物-陶瓷界面上的传输。在这项工作中,提出了一种改善这种界面的简便方法,即有目的地对 LLZO 颗粒表面进行工程处理,使其与 PEO:LiTFSI 固体聚合物电解质基质具有更好的兼容性。研究表明,将 LLZO 颗粒浸泡在硼酸溶液中进行表面处理可以改善 LLZO 的表面化学性质,从而使经过 20 wt.% 硼处理的 LLZO 颗粒的 CPE 的离子电导率和阳离子转移数量比未经处理的 LLZO 颗粒的 CPE 有所提高。最终,改性材料在 Li // LiFePO4 电池中的循环性能和稳定性也得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Circular Economy and Chemical Conversion for Polyester Wastes. Enhanced Performance of Lithium-Sulfur Batteries Using Construction Wastes: A Sustainable Approach to High-Loading Sulfur Cathodes. Lewis acid sites in hollow cobalt phytate micropolyhedra promote the electrocatalytic water oxidation. Cation Vacancy-Mediated Ultrafast Hole Transport in CuBi2O4 Photocathodes. CORRIGENDUM: Correction to Solid State Zinc and Aluminum Ion Batteries: Challenges and Opportunities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1