Simpler is More: Efficient Top-K Nearest Neighbors Search on Large Road Networks

Yiqi Wang, Long Yuan, Wenjie Zhang, Xuemin Lin, Zi Chen, Qing Liu
{"title":"Simpler is More: Efficient Top-K Nearest Neighbors Search on Large Road Networks","authors":"Yiqi Wang, Long Yuan, Wenjie Zhang, Xuemin Lin, Zi Chen, Qing Liu","doi":"arxiv-2408.05432","DOIUrl":null,"url":null,"abstract":"Top-k Nearest Neighbors (kNN) problem on road network has numerous\napplications on location-based services. As direct search using the Dijkstra's\nalgorithm results in a large search space, a plethora of complex-index-based\napproaches have been proposed to speedup the query processing. However, even\nwith the current state-of-the-art approach, long query processing delays\npersist, along with significant space overhead and prohibitively long indexing\ntime. In this paper, we depart from the complex index designs prevalent in\nexisting literature and propose a simple index named KNN-Index. With KNN-Index,\nwe can answer a kNN query optimally and progressively with small and\nsize-bounded index. To improve the index construction performance, we propose a\nbidirectional construction algorithm which can effectively share the common\ncomputation during the construction. Theoretical analysis and experimental\nresults on real road networks demonstrate the superiority of KNN-Index over the\nstate-of-the-art approach in query processing performance, index size, and\nindex construction efficiency.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Top-k Nearest Neighbors (kNN) problem on road network has numerous applications on location-based services. As direct search using the Dijkstra's algorithm results in a large search space, a plethora of complex-index-based approaches have been proposed to speedup the query processing. However, even with the current state-of-the-art approach, long query processing delays persist, along with significant space overhead and prohibitively long indexing time. In this paper, we depart from the complex index designs prevalent in existing literature and propose a simple index named KNN-Index. With KNN-Index, we can answer a kNN query optimally and progressively with small and size-bounded index. To improve the index construction performance, we propose a bidirectional construction algorithm which can effectively share the common computation during the construction. Theoretical analysis and experimental results on real road networks demonstrate the superiority of KNN-Index over the state-of-the-art approach in query processing performance, index size, and index construction efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
越简单越好:大型道路网络上的高效 Top-K 近邻搜索
道路网络上的顶k近邻(kNN)问题在基于位置的服务中有着广泛的应用。由于使用 Dijkstra 算法进行直接搜索会产生很大的搜索空间,因此人们提出了大量基于复杂索引的方法来加快查询处理速度。然而,即使是当前最先进的方法,也存在查询处理延迟长、空间开销大、索引时间过长等问题。在本文中,我们摒弃了现有文献中普遍存在的复杂索引设计,提出了一种名为 KNN-Index 的简单索引。通过 KNN-Index ,我们可以用小规模、有限制的索引来优化和渐进地回答 kNN 查询。为了提高索引构建性能,我们提出了一种双向构建算法,它能有效地分担构建过程中的公共计算。理论分析和在真实道路网络上的实验结果表明,KNN-Index 在查询处理性能、索引大小和索引构建效率方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1