Exploiting Formal Concept Analysis for Data Modeling in Data Lakes

Anes Bendimerad, Romain Mathonat, Youcef Remil, Mehdi Kaytoue
{"title":"Exploiting Formal Concept Analysis for Data Modeling in Data Lakes","authors":"Anes Bendimerad, Romain Mathonat, Youcef Remil, Mehdi Kaytoue","doi":"arxiv-2408.13265","DOIUrl":null,"url":null,"abstract":"Data lakes are widely used to store extensive and heterogeneous datasets for\nadvanced analytics. However, the unstructured nature of data in these\nrepositories introduces complexities in exploiting them and extracting\nmeaningful insights. This motivates the need of exploring efficient approaches\nfor consolidating data lakes and deriving a common and unified schema. This\npaper introduces a practical data visualization and analysis approach rooted in\nFormal Concept Analysis (FCA) to systematically clean, organize, and design\ndata structures within a data lake. We explore diverse data structures stored\nin our data lake at Infologic, including InfluxDB measurements and\nElasticsearch indexes, aiming to derive conventions for a more accessible data\nmodel. Leveraging FCA, we represent data structures as objects, analyze the\nconcept lattice, and present two strategies-top-down and bottom-up-to unify\nthese structures and establish a common schema. Our methodology yields\nsignificant results, enabling the identification of common concepts in the data\nstructures, such as resources along with their underlying shared fields\n(timestamp, type, usedRatio, etc.). Moreover, the number of distinct data\nstructure field names is reduced by 54 percent (from 190 to 88) in the studied\nsubset of our data lake. We achieve a complete coverage of 80 percent of data\nstructures with only 34 distinct field names, a significant improvement from\nthe initial 121 field names that were needed to reach such coverage. The paper\nprovides insights into the Infologic ecosystem, problem formulation,\nexploration strategies, and presents both qualitative and quantitative results.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data lakes are widely used to store extensive and heterogeneous datasets for advanced analytics. However, the unstructured nature of data in these repositories introduces complexities in exploiting them and extracting meaningful insights. This motivates the need of exploring efficient approaches for consolidating data lakes and deriving a common and unified schema. This paper introduces a practical data visualization and analysis approach rooted in Formal Concept Analysis (FCA) to systematically clean, organize, and design data structures within a data lake. We explore diverse data structures stored in our data lake at Infologic, including InfluxDB measurements and Elasticsearch indexes, aiming to derive conventions for a more accessible data model. Leveraging FCA, we represent data structures as objects, analyze the concept lattice, and present two strategies-top-down and bottom-up-to unify these structures and establish a common schema. Our methodology yields significant results, enabling the identification of common concepts in the data structures, such as resources along with their underlying shared fields (timestamp, type, usedRatio, etc.). Moreover, the number of distinct data structure field names is reduced by 54 percent (from 190 to 88) in the studied subset of our data lake. We achieve a complete coverage of 80 percent of data structures with only 34 distinct field names, a significant improvement from the initial 121 field names that were needed to reach such coverage. The paper provides insights into the Infologic ecosystem, problem formulation, exploration strategies, and presents both qualitative and quantitative results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用形式概念分析进行数据湖中的数据建模
数据湖被广泛用于存储用于高级分析的大量异构数据集。然而,这些存储库中数据的非结构化性质给利用这些数据和提取有意义的见解带来了复杂性。这就促使人们需要探索有效的方法来整合数据湖,并衍生出通用的统一模式。本文介绍了一种植根于规范概念分析(FCA)的实用数据可视化和分析方法,用于系统地清理、组织和设计数据湖中的数据结构。我们探索了存储在 Infologic 数据湖中的各种数据结构,包括 InfluxDB 测量和 Elasticsearch 索引,旨在为更易于访问的数据模型制定惯例。利用 FCA,我们将数据结构表示为对象,分析概念网格,并提出了两种策略--自上而下和自下而上--以统一这些结构并建立通用模式。我们的方法取得了显著的成果,能够识别数据结构中的共同概念,如资源及其底层共享字段(时间戳、类型、使用率等)。此外,在我们研究的数据湖子集中,不同数据结构字段名称的数量减少了 54%(从 190 个减少到 88 个)。我们只用了 34 个不同的字段名就实现了对 80% 数据结构的完全覆盖,这与最初要达到这样的覆盖率所需的 121 个字段名相比有了显著改善。本文深入介绍了 Infologic 生态系统、问题制定、探索策略,并展示了定性和定量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1