SIP-IFVM: An efficient time-accurate implicit MHD model of corona and CME with strong magnetic field

H. P. Wang, J. H. Guo, L. P. Yang, S. Poedts, F. Zhang, A. Lani, T. Baratashvili, L. Linan, R. Lin, Y. Guo
{"title":"SIP-IFVM: An efficient time-accurate implicit MHD model of corona and CME with strong magnetic field","authors":"H. P. Wang, J. H. Guo, L. P. Yang, S. Poedts, F. Zhang, A. Lani, T. Baratashvili, L. Linan, R. Lin, Y. Guo","doi":"arxiv-2409.02022","DOIUrl":null,"url":null,"abstract":"CMEs are one of the main drivers of space weather. However, robust and\nefficient numerical modeling of the initial stages of CME propagation and\nevolution process in the sub-Alfvenic corona is still lacking. Based on the\nhighly efficient quasi-steady-state implicit MHD coronal model (Feng et al.\n2021; Wang et al. 2022a), we further develop an efficient and time-accurate\ncoronal model and employ it to simulate the CME's evolution and propagation. A\npseudo-time marching method, where a pseudo time, tau, is introduced at each\nphysical time step to update the solution by solving a steady-state problem on\ntau, is devised to improve the temporal accuracy. Moreover, an RBSL flux rope\nwhose axis can be designed in an arbitrary shape is inserted into the\nbackground corona to trigger the CME event. We call it the SIP-IFVM coronal\nmodel and utilize it to simulate a CME evolution process from the solar surface\nto 20 Rs in the background corona of CR 2219. It can finish the CME simulation\ncovering 6 hours of physical time by less than 0.5 hours (192 CPU cores, 1 M\ncells) without much loss in temporal accuracy. Besides, an ad hoc simulation\nwith initial magnetic fields artificially increased shows that this model can\neffectively deal with time-dependent low-beta problems (beta<0.0005).\nAdditionally, an Orszag-Tang MHD vortex flow simulation demonstrates that the\npseudo-time-marching method adopted in this coronal model is also capable of\nsimulating small-scale unsteady-state flows. The simulation results show that\nthis MHD coronal model is very efficient and numerically stable and is\npromising to timely and accurately simulate time-varying events in solar corona\nwith low plasma beta.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CMEs are one of the main drivers of space weather. However, robust and efficient numerical modeling of the initial stages of CME propagation and evolution process in the sub-Alfvenic corona is still lacking. Based on the highly efficient quasi-steady-state implicit MHD coronal model (Feng et al. 2021; Wang et al. 2022a), we further develop an efficient and time-accurate coronal model and employ it to simulate the CME's evolution and propagation. A pseudo-time marching method, where a pseudo time, tau, is introduced at each physical time step to update the solution by solving a steady-state problem on tau, is devised to improve the temporal accuracy. Moreover, an RBSL flux rope whose axis can be designed in an arbitrary shape is inserted into the background corona to trigger the CME event. We call it the SIP-IFVM coronal model and utilize it to simulate a CME evolution process from the solar surface to 20 Rs in the background corona of CR 2219. It can finish the CME simulation covering 6 hours of physical time by less than 0.5 hours (192 CPU cores, 1 M cells) without much loss in temporal accuracy. Besides, an ad hoc simulation with initial magnetic fields artificially increased shows that this model can effectively deal with time-dependent low-beta problems (beta<0.0005). Additionally, an Orszag-Tang MHD vortex flow simulation demonstrates that the pseudo-time-marching method adopted in this coronal model is also capable of simulating small-scale unsteady-state flows. The simulation results show that this MHD coronal model is very efficient and numerically stable and is promising to timely and accurately simulate time-varying events in solar corona with low plasma beta.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIP-IFVM:具有强磁场的日冕和 CME 的高效时间精确隐式 MHD 模型
集合放射粒子是空间天气的主要驱动力之一。然而,目前还缺乏对CME在亚阿尔文日冕传播和演化过程初始阶段的稳健而高效的数值模拟。在高效的准稳态隐式MHD日冕模型(Feng等,2021;Wang等,2022a)的基础上,我们进一步建立了一个高效和时间精确的日冕模型,并用它来模拟CME的演化和传播。为了提高时间精度,我们设计了一种伪时间行进法,即在每个物理时间步引入一个伪时间 tau,通过求解稳态问题 tau 来更新解。此外,还在背景日冕中插入了一个 RBSL 通量罗盘,其轴线可以设计成任意形状,以触发 CME 事件。我们将其称为SIP-IFVM日冕模型,并利用它模拟了CR 2219背景日冕中从太阳表面到20 Rs的CME演化过程。它能以不到0.5小时的时间(192个CPU核,1个Mcells)完成覆盖6小时物理时间的CME模拟,而时间精度不会有太大损失。此外,一个人为增加初始磁场的临时模拟表明,该模型可以有效地处理与时间相关的低贝塔值问题(贝塔值<0.0005)。此外,一个 Orszag-Tang MHD 涡流模拟表明,该日冕模型采用的伪时间行进方法也能够模拟小尺度的非稳态流动。模拟结果表明,该 MHD 日冕模型非常高效,数值稳定,有望及时准确地模拟低等离子体贝塔太阳日冕中的时变事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-similar solutions of oscillatory reconnection: parameter study of magnetic field strength and background temperature Post-Keplerian perturbations of the hyperbolic motion in the field of a massive, rotating object On the Euler-type gravitomagnetic orbital effects in the field of a precessing body A Pileup of Coronal Mass Ejections Produced the Largest Geomagnetic Storm in Two Decades Alpha-Proton Differential Flow of A Coronal Mass Ejection at 15 Solar Radii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1