DOCE: Finding the Sweet Spot for Execution-Based Code Generation

Haau-Sing Li, Patrick Fernandes, Iryna Gurevych, André F. T. Martins
{"title":"DOCE: Finding the Sweet Spot for Execution-Based Code Generation","authors":"Haau-Sing Li, Patrick Fernandes, Iryna Gurevych, André F. T. Martins","doi":"arxiv-2408.13745","DOIUrl":null,"url":null,"abstract":"Recently, a diverse set of decoding and reranking procedures have been shown\neffective for LLM-based code generation. However, a comprehensive framework\nthat links and experimentally compares these methods is missing. We address\nthis by proposing Decoding Objectives for Code Execution, a comprehensive\nframework that includes candidate generation, $n$-best reranking, minimum Bayes\nrisk (MBR) decoding, and self-debugging as the core components. We then study\nthe contributions of these components through execution-based evaluation\nmetrics. Our findings highlight the importance of execution-based methods and\nthe difference gap between execution-based and execution-free methods.\nFurthermore, we assess the impact of filtering based on trial unit tests, a\nsimple and effective strategy that has been often overlooked in prior works. We\nalso propose self-debugging on multiple candidates, obtaining state-of-the-art\nperformance on reranking for code generation. We expect our framework to\nprovide a solid guideline for future research on code generation.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, a diverse set of decoding and reranking procedures have been shown effective for LLM-based code generation. However, a comprehensive framework that links and experimentally compares these methods is missing. We address this by proposing Decoding Objectives for Code Execution, a comprehensive framework that includes candidate generation, $n$-best reranking, minimum Bayes risk (MBR) decoding, and self-debugging as the core components. We then study the contributions of these components through execution-based evaluation metrics. Our findings highlight the importance of execution-based methods and the difference gap between execution-based and execution-free methods. Furthermore, we assess the impact of filtering based on trial unit tests, a simple and effective strategy that has been often overlooked in prior works. We also propose self-debugging on multiple candidates, obtaining state-of-the-art performance on reranking for code generation. We expect our framework to provide a solid guideline for future research on code generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DOCE:寻找基于执行的代码生成的最佳点
最近,有多种解码和重排程序被证明对基于 LLM 的代码生成有效。然而,目前还缺少一个将这些方法联系起来并进行实验比较的综合框架。为了解决这个问题,我们提出了 "代码执行的解码目标"(Decoding Objectives for Code Execution),这是一个综合框架,包括候选生成、$n$最优重排、最小贝叶斯风险(MBR)解码和自调试等核心组件。然后,我们通过基于执行的评估指标来研究这些组件的贡献。我们的研究结果强调了基于执行的方法的重要性,以及基于执行的方法与免执行方法之间的差距。此外,我们还评估了基于试验单元测试的过滤的影响,这种简单有效的策略在之前的研究中经常被忽视。我们还提出了对多个候选代码进行自调试的方法,在代码生成的重新排序方面取得了最先进的性能。我们希望我们的框架能为未来的代码生成研究提供坚实的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Consistency and Program Transformations No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax Towards Quantum Multiparty Session Types The Incredible Shrinking Context... in a decompiler near you Scheme Pearl: Quantum Continuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1