Coarse-to-Fine Target Detection for HFSWR With Spatial-Frequency Analysis and Subnet Structure

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-09-02 DOI:10.1109/TMM.2024.3453044
Wandong Zhang;Yimin Yang;Tianlong Liu
{"title":"Coarse-to-Fine Target Detection for HFSWR With Spatial-Frequency Analysis and Subnet Structure","authors":"Wandong Zhang;Yimin Yang;Tianlong Liu","doi":"10.1109/TMM.2024.3453044","DOIUrl":null,"url":null,"abstract":"High-frequency surface wave radar (HFSWR) is a powerful tool for ship detection and surveillance. blackHowever, the use of pre-trained deep learning (DL) networks for ship detection is challenging due to the limited training samples in HFSWR and the substantial differences between remote sensing images and everyday images. To tackle these issues, this paper proposes a coarse-to-fine target detection approach that combines traditional methods with DL, resulting in improved performance. The contributions of this work include: 1) a two-stage learning pipeline that integrates spatial-frequency analysis (SFA) with subnet-based neural networks, 2) an automatic linear thresholding algorithm for plausible target region (PTR) detection, and 3) a robust subnet neural network for fine target detection. The advantage of using SFA and subnet network is that the SFA reduces the need for extensive training data, while the subnet neural network excels at localizing ships even with limited training data. Experimental results on the HFSWR-RD dataset affirm the model's superior performance compared to rival algorithms.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11290-11301"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663225/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency surface wave radar (HFSWR) is a powerful tool for ship detection and surveillance. blackHowever, the use of pre-trained deep learning (DL) networks for ship detection is challenging due to the limited training samples in HFSWR and the substantial differences between remote sensing images and everyday images. To tackle these issues, this paper proposes a coarse-to-fine target detection approach that combines traditional methods with DL, resulting in improved performance. The contributions of this work include: 1) a two-stage learning pipeline that integrates spatial-frequency analysis (SFA) with subnet-based neural networks, 2) an automatic linear thresholding algorithm for plausible target region (PTR) detection, and 3) a robust subnet neural network for fine target detection. The advantage of using SFA and subnet network is that the SFA reduces the need for extensive training data, while the subnet neural network excels at localizing ships even with limited training data. Experimental results on the HFSWR-RD dataset affirm the model's superior performance compared to rival algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间频率分析和子网结构进行从粗到细的 HFSWR 目标检测
然而,由于高频面波雷达的训练样本有限,而且遥感图像与日常图像之间存在巨大差异,使用预先训练好的深度学习(DL)网络进行船舶探测具有挑战性。为了解决这些问题,本文提出了一种从粗到细的目标检测方法,将传统方法与深度学习相结合,从而提高了性能。这项工作的贡献包括1)将空间频率分析(SFA)与基于子网的神经网络相结合的两阶段学习管道;2)用于可信目标区域(PTR)检测的自动线性阈值算法;3)用于精细目标检测的鲁棒子网神经网络。使用 SFA 和子网神经网络的优势在于,SFA 减少了对大量训练数据的需求,而子网神经网络即使在训练数据有限的情况下也能出色地定位舰船。在 HFSWR-RD 数据集上的实验结果表明,与竞争对手的算法相比,该模型具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Improving Network Interpretability via Explanation Consistency Evaluation Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection With Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1