Federated Deep Reinforcement Learning-Based Intelligent Channel Access in Dense Wi-Fi Deployments

Xinyang Du, Xuming Fang, Rong He, Li Yan, Liuming Lu, Chaoming Luo
{"title":"Federated Deep Reinforcement Learning-Based Intelligent Channel Access in Dense Wi-Fi Deployments","authors":"Xinyang Du, Xuming Fang, Rong He, Li Yan, Liuming Lu, Chaoming Luo","doi":"arxiv-2409.01004","DOIUrl":null,"url":null,"abstract":"The IEEE 802.11 MAC layer utilizes the Carrier Sense Multiple Access with\nCollision Avoidance (CSMA/CA) mechanism for channel contention and access.\nHowever, in densely deployed Wi-Fi scenarios, intense competition may lead to\npacket collisions among users. Although many studies have used machine learning\nmethods to optimize channel contention and access mechanisms, most of them are\nbased on AP-centric single-agent models or distributed models, which still\nsuffer poor generalization and insensitivity to dynamic environments. To\naddress these challenges, this paper proposes an intelligent channel contention\naccess mechanism that combines Federated Learning (FL) and Deep Deterministic\nPolicy Gradient (DDPG) algorithms. Additionally, an FL model training pruning\nstrategy and weight aggregation algorithm are designed to enhance the\neffectiveness of training samples and reduce the average MAC delay. We evaluate\nand validate the proposed solution using NS3-AI framework. Simulation results\nshow that in static scenarios, our proposed scheme reduces the average MAC\ndelay by 25.24% compared to traditional FL algorithms. In dynamic scenarios, it\noutperforms Average Federated Reinforcement Learning (A-FRL) and distributed\nDeep Reinforcement Learning (DRL) algorithms by 25.72% and 45.9%, respectively.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The IEEE 802.11 MAC layer utilizes the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism for channel contention and access. However, in densely deployed Wi-Fi scenarios, intense competition may lead to packet collisions among users. Although many studies have used machine learning methods to optimize channel contention and access mechanisms, most of them are based on AP-centric single-agent models or distributed models, which still suffer poor generalization and insensitivity to dynamic environments. To address these challenges, this paper proposes an intelligent channel contention access mechanism that combines Federated Learning (FL) and Deep Deterministic Policy Gradient (DDPG) algorithms. Additionally, an FL model training pruning strategy and weight aggregation algorithm are designed to enhance the effectiveness of training samples and reduce the average MAC delay. We evaluate and validate the proposed solution using NS3-AI framework. Simulation results show that in static scenarios, our proposed scheme reduces the average MAC delay by 25.24% compared to traditional FL algorithms. In dynamic scenarios, it outperforms Average Federated Reinforcement Learning (A-FRL) and distributed Deep Reinforcement Learning (DRL) algorithms by 25.72% and 45.9%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集 Wi-Fi 部署中基于联合深度强化学习的智能信道接入
IEEE 802.11 MAC 层利用载波侦测多路访问与碰撞避免(CSMA/CA)机制进行信道争用和访问。然而,在密集部署的 Wi-Fi 场景中,激烈的竞争可能会导致用户之间的分组碰撞。虽然许多研究都使用机器学习方法来优化信道争用和接入机制,但大多数研究都是基于以接入点为中心的单个代理模型或分布式模型,这些模型仍然存在泛化能力差和对动态环境不敏感的问题。为了应对这些挑战,本文提出了一种智能信道争用和访问机制,该机制结合了联合学习(FL)和深度确定性策略梯度(DDPG)算法。此外,还设计了一种 FL 模型训练剪枝策略和权重聚合算法,以提高训练样本的有效性并降低平均 MAC 时延。我们使用 NS3-AI 框架对所提出的解决方案进行了评估和验证。仿真结果表明,在静态场景下,与传统的 FL 算法相比,我们提出的方案降低了 25.24% 的平均 MAC 延迟。在动态场景中,它优于平均联合强化学习(A-FRL)和分布式深度强化学习(DRL)算法,分别提高了 25.72% 和 45.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1