Generating Packet-Level Header Traces Using GNN-powered GAN

Zhen Xu
{"title":"Generating Packet-Level Header Traces Using GNN-powered GAN","authors":"Zhen Xu","doi":"arxiv-2409.01265","DOIUrl":null,"url":null,"abstract":"This study presents a novel method combining Graph Neural Networks (GNNs) and\nGenerative Adversarial Networks (GANs) for generating packet-level header\ntraces. By incorporating word2vec embeddings, this work significantly mitigates\nthe dimensionality curse often associated with traditional one-hot encoding,\nthereby enhancing the training effectiveness of the model. Experimental results\ndemonstrate that word2vec encoding captures semantic relationships between\nfield values more effectively than one-hot encoding, improving the accuracy and\nnaturalness of the generated data. Additionally, the introduction of GNNs\nfurther boosts the discriminator's ability to distinguish between real and\nsynthetic data, leading to more realistic and diverse generated samples. The\nfindings not only provide a new theoretical approach for network traffic data\ngeneration but also offer practical insights into improving data synthesis\nquality through enhanced feature representation and model architecture. Future\nresearch could focus on optimizing the integration of GNNs and GANs, reducing\ncomputational costs, and validating the model's generalizability on larger\ndatasets. Exploring other encoding methods and model structure improvements may\nalso yield new possibilities for network data generation. This research\nadvances the field of data synthesis, with potential applications in network\nsecurity and traffic analysis.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel method combining Graph Neural Networks (GNNs) and Generative Adversarial Networks (GANs) for generating packet-level header traces. By incorporating word2vec embeddings, this work significantly mitigates the dimensionality curse often associated with traditional one-hot encoding, thereby enhancing the training effectiveness of the model. Experimental results demonstrate that word2vec encoding captures semantic relationships between field values more effectively than one-hot encoding, improving the accuracy and naturalness of the generated data. Additionally, the introduction of GNNs further boosts the discriminator's ability to distinguish between real and synthetic data, leading to more realistic and diverse generated samples. The findings not only provide a new theoretical approach for network traffic data generation but also offer practical insights into improving data synthesis quality through enhanced feature representation and model architecture. Future research could focus on optimizing the integration of GNNs and GANs, reducing computational costs, and validating the model's generalizability on larger datasets. Exploring other encoding methods and model structure improvements may also yield new possibilities for network data generation. This research advances the field of data synthesis, with potential applications in network security and traffic analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 GNN 驱动的 GAN 生成数据包级标头跟踪
本研究提出了一种结合图神经网络(GNN)和生成对抗网络(GAN)的新方法,用于生成数据包级标题跟踪。通过结合 word2vec 嵌入,这项工作大大缓解了传统单次编码经常带来的维度诅咒,从而提高了模型的训练效果。实验结果表明,与单次编码相比,word2vec 编码能更有效地捕捉字段值之间的语义关系,从而提高了生成数据的准确性和自然度。此外,GNN 的引入进一步提高了判别器区分真实数据和合成数据的能力,从而生成更真实、更多样的样本。这些发现不仅为网络流量数据生成提供了一种新的理论方法,还为通过增强特征表示和模型架构来提高数据合成质量提供了实践启示。未来的研究重点可以放在优化 GNN 和 GAN 的集成、降低计算成本以及验证模型在更大数据集上的通用性上。探索其他编码方法和改进模型结构也可能为网络数据生成带来新的可能性。这项研究推动了数据合成领域的发展,并有可能应用于网络安全和流量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1