Nanoelectrochemical Platform for Elucidating the Reaction between a Solid Active Material and a Dissolved Redox Species for Mediated Redox-Flow Batteries
Dr. Carla Santana Santos, Dr. Thomas Quast, Prof. Edgar Ventosa, Prof. Wolfgang Schuhmann
{"title":"Nanoelectrochemical Platform for Elucidating the Reaction between a Solid Active Material and a Dissolved Redox Species for Mediated Redox-Flow Batteries","authors":"Dr. Carla Santana Santos, Dr. Thomas Quast, Prof. Edgar Ventosa, Prof. Wolfgang Schuhmann","doi":"10.1002/celc.202400283","DOIUrl":null,"url":null,"abstract":"<p>Mediated processes using a solid material, often called “solid booster”, have been proposed to increase the energy density in redox flow batteries (RFB). The strategy alters the energy storage in the dissolved redox species to a solid active material placed in a compartment of the device. Understanding the reaction kinetics of the dissolved redox mediator and the solid booster is crucial for proposing feasible pairs of solid boosters and dissolved redox mediators. We demonstrate a nanoelectrochemical methodology to monitor the reaction between the dissolved species in solution and the solid active material electrodeposited in recessed carbon nanoelectrodes. Our strategy overcomes issues inherent to standard methodologies, such as mass transport limitation, and evaluation of the intrinsic reactivity of the solid material. As a proof of concept, Prussian blue was electrodeposited in a recessed carbon nanoelectrode and used as a confined-solid material platform to evaluate the reaction between the reduced form of Prussian blue and triiodide, <span></span><math></math>\n. A high conversion rate of the solid booster was observed in the presence of μM concentrations of the dissolved redox species. The proposed nanoelectrode was successfully employed as a potentiometric sensor to monitor the evolution of the reaction with the dissolved active species.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400283","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400283","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Mediated processes using a solid material, often called “solid booster”, have been proposed to increase the energy density in redox flow batteries (RFB). The strategy alters the energy storage in the dissolved redox species to a solid active material placed in a compartment of the device. Understanding the reaction kinetics of the dissolved redox mediator and the solid booster is crucial for proposing feasible pairs of solid boosters and dissolved redox mediators. We demonstrate a nanoelectrochemical methodology to monitor the reaction between the dissolved species in solution and the solid active material electrodeposited in recessed carbon nanoelectrodes. Our strategy overcomes issues inherent to standard methodologies, such as mass transport limitation, and evaluation of the intrinsic reactivity of the solid material. As a proof of concept, Prussian blue was electrodeposited in a recessed carbon nanoelectrode and used as a confined-solid material platform to evaluate the reaction between the reduced form of Prussian blue and triiodide,
. A high conversion rate of the solid booster was observed in the presence of μM concentrations of the dissolved redox species. The proposed nanoelectrode was successfully employed as a potentiometric sensor to monitor the evolution of the reaction with the dissolved active species.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.