Nanoelectrochemical Platform for Elucidating the Reaction between a Solid Active Material and a Dissolved Redox Species for Mediated Redox-Flow Batteries

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-08-30 DOI:10.1002/celc.202400283
Dr. Carla Santana Santos, Dr. Thomas Quast, Prof. Edgar Ventosa, Prof. Wolfgang Schuhmann
{"title":"Nanoelectrochemical Platform for Elucidating the Reaction between a Solid Active Material and a Dissolved Redox Species for Mediated Redox-Flow Batteries","authors":"Dr. Carla Santana Santos,&nbsp;Dr. Thomas Quast,&nbsp;Prof. Edgar Ventosa,&nbsp;Prof. Wolfgang Schuhmann","doi":"10.1002/celc.202400283","DOIUrl":null,"url":null,"abstract":"<p>Mediated processes using a solid material, often called “solid booster”, have been proposed to increase the energy density in redox flow batteries (RFB). The strategy alters the energy storage in the dissolved redox species to a solid active material placed in a compartment of the device. Understanding the reaction kinetics of the dissolved redox mediator and the solid booster is crucial for proposing feasible pairs of solid boosters and dissolved redox mediators. We demonstrate a nanoelectrochemical methodology to monitor the reaction between the dissolved species in solution and the solid active material electrodeposited in recessed carbon nanoelectrodes. Our strategy overcomes issues inherent to standard methodologies, such as mass transport limitation, and evaluation of the intrinsic reactivity of the solid material. As a proof of concept, Prussian blue was electrodeposited in a recessed carbon nanoelectrode and used as a confined-solid material platform to evaluate the reaction between the reduced form of Prussian blue and triiodide, <span></span><math></math>\n. A high conversion rate of the solid booster was observed in the presence of μM concentrations of the dissolved redox species. The proposed nanoelectrode was successfully employed as a potentiometric sensor to monitor the evolution of the reaction with the dissolved active species.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400283","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400283","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Mediated processes using a solid material, often called “solid booster”, have been proposed to increase the energy density in redox flow batteries (RFB). The strategy alters the energy storage in the dissolved redox species to a solid active material placed in a compartment of the device. Understanding the reaction kinetics of the dissolved redox mediator and the solid booster is crucial for proposing feasible pairs of solid boosters and dissolved redox mediators. We demonstrate a nanoelectrochemical methodology to monitor the reaction between the dissolved species in solution and the solid active material electrodeposited in recessed carbon nanoelectrodes. Our strategy overcomes issues inherent to standard methodologies, such as mass transport limitation, and evaluation of the intrinsic reactivity of the solid material. As a proof of concept, Prussian blue was electrodeposited in a recessed carbon nanoelectrode and used as a confined-solid material platform to evaluate the reaction between the reduced form of Prussian blue and triiodide, . A high conversion rate of the solid booster was observed in the presence of μM concentrations of the dissolved redox species. The proposed nanoelectrode was successfully employed as a potentiometric sensor to monitor the evolution of the reaction with the dissolved active species.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阐明固态活性材料与溶解氧化还原物种之间反应的纳米电化学平台,用于介导氧化还原流电池
为了提高氧化还原液流电池(RFB)的能量密度,有人提出了使用固体材料(通常称为 "固体助推器")的介导过程。这种策略将溶解氧化还原物质中的能量储存改变为放置在设备隔室中的固体活性材料。了解溶解氧化还原介质和固体助推器的反应动力学对于提出可行的固体助推器和溶解氧化还原介质配对至关重要。我们展示了一种纳米电化学方法,用于监测溶液中的溶解物种与电沉积在凹陷碳纳米电极中的固体活性材料之间的反应。我们的策略克服了标准方法固有的问题,如质量传输限制和固体材料内在反应性评估。作为概念验证,普鲁士蓝被电沉积在凹陷碳纳米电极中,并被用作封闭固体材料平台,以评估普鲁士蓝的还原型与三碘化物之间的反应。在溶解氧化还原物种浓度为 μM 的情况下,观察到固体助推器的转化率很高。所提出的纳米电极被成功地用作电位传感器,以监测与溶解的活性物种反应的演变过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1