Detecting the undetectable: GAN-based strategies for network intrusion detection

Ruchi Bhatt, Gaurav Indra
{"title":"Detecting the undetectable: GAN-based strategies for network intrusion detection","authors":"Ruchi Bhatt, Gaurav Indra","doi":"10.1007/s41870-024-02172-7","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the challenge of enhancing network security by proposing a novel intrusion detection system using Generative Adversarial Networks. Traditional intrusion detection system often fail to keep up with rapidly evolving cyber threats. Our approach integrates Generative Adversarial Networks to dynamically learn and adapt to both genuine and adversarial network traffic patterns. Using the KDD Cup 1999 dataset for validation, we design a sophisticated Generative Adversarial Network architecture with a generator and discriminator to improve the resilience of intrusion detection system. Our experimental results demonstrate the model’s effectiveness, evaluated through metrics such as F1 score, accuracy, precision, and recall. This research advances the state-of-the-art in cybersecurity by showcasing the potential of Generative Adversarial Networks to fortify intrusion detection system against evolving threats, underscoring the necessity for adaptive defense mechanisms in modern network security.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02172-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of enhancing network security by proposing a novel intrusion detection system using Generative Adversarial Networks. Traditional intrusion detection system often fail to keep up with rapidly evolving cyber threats. Our approach integrates Generative Adversarial Networks to dynamically learn and adapt to both genuine and adversarial network traffic patterns. Using the KDD Cup 1999 dataset for validation, we design a sophisticated Generative Adversarial Network architecture with a generator and discriminator to improve the resilience of intrusion detection system. Our experimental results demonstrate the model’s effectiveness, evaluated through metrics such as F1 score, accuracy, precision, and recall. This research advances the state-of-the-art in cybersecurity by showcasing the potential of Generative Adversarial Networks to fortify intrusion detection system against evolving threats, underscoring the necessity for adaptive defense mechanisms in modern network security.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测无法检测的东西:基于 GAN 的网络入侵检测策略
本研究利用生成对抗网络(Generative Adversarial Networks)提出了一种新型入侵检测系统,以应对加强网络安全的挑战。传统的入侵检测系统往往跟不上快速发展的网络威胁。我们的方法整合了生成式对抗网络(Generative Adversarial Networks),可动态学习和适应真正的和对抗性的网络流量模式。利用 KDD Cup 1999 数据集进行验证,我们设计了一种带有生成器和判别器的复杂生成对抗网络架构,以提高入侵检测系统的适应能力。我们的实验结果证明了该模型的有效性,并通过 F1 分数、准确度、精确度和召回率等指标进行了评估。这项研究通过展示生成式对抗网络在加强入侵检测系统以应对不断变化的威胁方面的潜力,强调了自适应防御机制在现代网络安全中的必要性,从而推进了网络安全领域的最新发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1