Novel neurosymbolic artificial intelligence (NSAI) based algorithm to predict specific energy absorption in CoCrMo based architected materials

Akshansh Mishra, Vijaykumar S. Jatti, Dhruv A. Sawant, Ajay S. Visave
{"title":"Novel neurosymbolic artificial intelligence (NSAI) based algorithm to predict specific energy absorption in CoCrMo based architected materials","authors":"Akshansh Mishra, Vijaykumar S. Jatti, Dhruv A. Sawant, Ajay S. Visave","doi":"10.1007/s41870-024-02173-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, two neurosymbolic-based methods—the neurosymbolic decision tree (DT) and the neurosymbolic XGBoost—are compared with a simple artificial neural network (ANN) to see how well they perform. This provides a novel comparison of prediction algorithms. The outcomes demonstrate that the neurosymbolic-based algorithms outperform other algorithms in terms of mean squared error (MSE) and R-squared (R<sup>2</sup>) value. Simple ANN gave values of 8.4 and 0.92, Neurosymbolic Decision tree gave values of 1.4 and 0.98, Neurosymbolic XGBoost gave values of 0.62 and 0.99 as MSE and R<sup>2</sup> respectively. When combined, symbolic and neurological components offer a new methodology that is more accurate and comprehensible. This work highlights the ways in which neurosymbolic techniques can be applied to improve predictive modeling in several domains, contributing to the growing body of research on the subject.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02173-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two neurosymbolic-based methods—the neurosymbolic decision tree (DT) and the neurosymbolic XGBoost—are compared with a simple artificial neural network (ANN) to see how well they perform. This provides a novel comparison of prediction algorithms. The outcomes demonstrate that the neurosymbolic-based algorithms outperform other algorithms in terms of mean squared error (MSE) and R-squared (R2) value. Simple ANN gave values of 8.4 and 0.92, Neurosymbolic Decision tree gave values of 1.4 and 0.98, Neurosymbolic XGBoost gave values of 0.62 and 0.99 as MSE and R2 respectively. When combined, symbolic and neurological components offer a new methodology that is more accurate and comprehensible. This work highlights the ways in which neurosymbolic techniques can be applied to improve predictive modeling in several domains, contributing to the growing body of research on the subject.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经符号人工智能(NSAI)的新型算法,用于预测钴铬钼基建筑材料的比能量吸收率
本文将两种基于神经符号的方法--神经符号决策树(DT)和神经符号 XGBoost--与简单的人工神经网络(ANN)进行了比较,以了解它们的性能如何。这提供了一种新颖的预测算法比较。结果表明,基于神经符号的算法在均方误差 (MSE) 和 R 平方 (R2) 值方面优于其他算法。简单 ANN 的 MSE 和 R2 值分别为 8.4 和 0.92,神经符号决策树的 MSE 和 R2 值分别为 1.4 和 0.98,神经符号 XGBoost 的 MSE 和 R2 值分别为 0.62 和 0.99。将符号和神经成分结合起来,可以提供一种更准确、更易理解的新方法。这项工作强调了神经符号技术可用于改进多个领域的预测建模的方式,为这一主题日益增多的研究做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1