Shuanghai Wang, Kun He, Yongkang Xu, Zhuoyi Li, Jin Wang, Caitao Li, Xingze Dai, Jun Du, Yong-Lei Wang, Ronghua Liu, Xianyang Lu, Yongbing Xu, Liang He
{"title":"Lower switching-current density in Ta/(Pt/X)n/Pt/Co/Ta (X = Ta,Mn,Cu,V,Zr, Bi; n = 3, 4) multilayers based on a domain-wall-depinning model","authors":"Shuanghai Wang, Kun He, Yongkang Xu, Zhuoyi Li, Jin Wang, Caitao Li, Xingze Dai, Jun Du, Yong-Lei Wang, Ronghua Liu, Xianyang Lu, Yongbing Xu, Liang He","doi":"10.1103/physrevapplied.22.l021002","DOIUrl":null,"url":null,"abstract":"In recent years, spin-orbit torque (SOT) generated by heavy metal (HM) has garnered increasing attention. However, SOT-magnetic random-access memory based on HM suffers from a low spin Hall angle and high current density. Here, we demonstrate that the critical switching-current density (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>I</mi><mi>c</mi></msub></math>) in a multilayer structure of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ta</mi><mo>/</mo><mo stretchy=\"false\">(</mo><mi>Pt</mi><mo>/</mo><mi>Ta</mi><msub><mo stretchy=\"false\">)</mo><mn>4</mn></msub><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Co</mi><mo>/</mo><mi>Ta</mi></math> has been reduced by 79% compared with that of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Ta</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Co</mi><mo>/</mo><mi>Ta</mi></math>, achieving a value of 5.88 × <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>6</mn></msup><mspace width=\"0.2em\"></mspace><mrow><mrow><mi mathvariant=\"normal\">A</mi></mrow></mrow><mo>/</mo><msup><mi>cm</mi><mn>2</mn></msup></math>. This value is considerably low among all reported values in the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Pt</mi><mo>/</mo><mi>Co</mi></math> system literature. The reduction of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>I</mi><mi>c</mi></msub></math> is accompanied by enhanced dampinglike torque efficiency (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>β</mi><mi>D</mi></msub></math>) and reduced coercive force (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>c</mi></msub></math>). A perfect linear correlation has been observed between <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>I</mi><mi>c</mi></msub></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>H</mi><mi>c</mi></msub></math>/<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>β</mi><mi>D</mi></msub></math>, which supports the domain-wall depinning model of the SOT-induced magnetization reversal in this system. Crucially, this linearity extends to several metal dopants possessing the identical superlattice structure. This research offers insights into the future of low-power, high-density magnetic memory technology based on HM materials.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"4 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.l021002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, spin-orbit torque (SOT) generated by heavy metal (HM) has garnered increasing attention. However, SOT-magnetic random-access memory based on HM suffers from a low spin Hall angle and high current density. Here, we demonstrate that the critical switching-current density () in a multilayer structure of has been reduced by 79% compared with that of , achieving a value of 5.88 × . This value is considerably low among all reported values in the system literature. The reduction of is accompanied by enhanced dampinglike torque efficiency () and reduced coercive force (). A perfect linear correlation has been observed between and /, which supports the domain-wall depinning model of the SOT-induced magnetization reversal in this system. Crucially, this linearity extends to several metal dopants possessing the identical superlattice structure. This research offers insights into the future of low-power, high-density magnetic memory technology based on HM materials.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.