Two-dimensional P3¯m1Ca3N2, Ba3P2, and Ba3As2: Promising stable narrow-gap semiconductors for infrared and broadband photodetectors

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED Physical Review Applied Pub Date : 2024-09-05 DOI:10.1103/physrevapplied.22.034013
Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration
{"title":"Two-dimensional P3¯m1Ca3N2, Ba3P2, and Ba3As2: Promising stable narrow-gap semiconductors for infrared and broadband photodetectors","authors":"Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration","doi":"10.1103/physrevapplied.22.034013","DOIUrl":null,"url":null,"abstract":"Exploring two-dimensional (2D) narrow-gap materials with exceptional stability and outstanding photoelectric performance has become a key focus in nano-optoelectronics. However, most existing 2D materials contain relatively large band gaps, and those with narrow band gaps tend to have inadequate stability. This study employed first-principles calculation to predict three alternative narrow-gap 2D binary group (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>II</mi><mn>3</mn></msub></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"normal\">V</mi></mrow><mn>2</mn></msub></math>) materials in the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mrow><mover><mn>3</mn><mo stretchy=\"false\">¯</mo></mover></mrow><mi>m</mi><mn>1</mn></math> space group: <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math>. All these materials exhibit excellent energetic, mechanical, dynamic, and thermal stability. Their mechanical properties reveal isotropic characteristics and demonstrate excellent in-plane stiffness and flexibility. Regarding electronic properties, monolayer <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math> possess indirect narrow band gaps of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.41</mn></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.61</mn></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.68</mn></math> eV, respectively. Moreover, they exhibit high electron mobilities (about <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>3</mn></msup></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>4</mn></msup><mspace width=\"0.2em\"></mspace><msup><mi>cm</mi><mn>2</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">V</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">s</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>) and are nearly isotropic. In terms of optical properties, they demonstrate a significantly broad absorption range, spanning from the IR to visible and UV regions, with remarkably high absorption coefficients (approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>4</mn></msup></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>5</mn></msup><mspace width=\"0.2em\"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Additionally, their exciton binding energies are higher than those observed in traditional bulk materials while lower than most other 2D materials, facilitating excellent light-driven performance. We propose that these alternative 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mrow><mover><mn>3</mn><mo stretchy=\"false\">¯</mo></mover></mrow><mi>m</mi><mn>1</mn><mspace width=\"0.2em\"></mspace><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math> binary narrow-gap semiconductors will hold promising application prospects in nano-optoelectronic fields such as IR light detection, ambipolar transistors, medical imaging, electrodes, optical communication, and remote sensing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"180 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring two-dimensional (2D) narrow-gap materials with exceptional stability and outstanding photoelectric performance has become a key focus in nano-optoelectronics. However, most existing 2D materials contain relatively large band gaps, and those with narrow band gaps tend to have inadequate stability. This study employed first-principles calculation to predict three alternative narrow-gap 2D binary group (II3-V2) materials in the P3¯m1 space group: Ca3N2, Ba3P2, and Ba3As2. All these materials exhibit excellent energetic, mechanical, dynamic, and thermal stability. Their mechanical properties reveal isotropic characteristics and demonstrate excellent in-plane stiffness and flexibility. Regarding electronic properties, monolayer Ca3N2, Ba3P2, and Ba3As2 possess indirect narrow band gaps of 0.41, 0.61, and 0.68 eV, respectively. Moreover, they exhibit high electron mobilities (about 103104cm2V1s1) and are nearly isotropic. In terms of optical properties, they demonstrate a significantly broad absorption range, spanning from the IR to visible and UV regions, with remarkably high absorption coefficients (approximately 104105cm1). Additionally, their exciton binding energies are higher than those observed in traditional bulk materials while lower than most other 2D materials, facilitating excellent light-driven performance. We propose that these alternative 2D P3¯m1Ca3N2, Ba3P2, and Ba3As2 binary narrow-gap semiconductors will hold promising application prospects in nano-optoelectronic fields such as IR light detection, ambipolar transistors, medical imaging, electrodes, optical communication, and remote sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维 P3¯m1Ca3N2、Ba3P2 和 Ba3As2:有望用于红外和宽带光探测器的稳定窄隙半导体
探索具有优异稳定性和出色光电性能的二维(2D)窄间隙材料已成为纳米光电子学的一个重点。然而,现有的大多数二维材料都含有相对较大的带隙,而带隙较窄的材料往往稳定性不足。本研究采用第一性原理计算,预测了 P3¯m1 空间群中三种可供选择的窄间隙二维二元基团(II3-V2)材料:Ca3N2、Ba3P2 和 Ba3As2。所有这些材料都表现出卓越的能量、机械、动态和热稳定性。它们的机械性能显示出各向同性的特点,并具有出色的面内刚度和柔韧性。在电子特性方面,单层 Ca3N2、Ba3P2 和 Ba3As2 分别具有 0.41、0.61 和 0.68 eV 的间接窄带隙。此外,它们还表现出很高的电子迁移率(约 103-104cm2V-1s-1),并且几乎各向同性。在光学特性方面,它们的吸收范围很广,从红外到可见光和紫外区,吸收系数非常高(约 104-105cm-1)。此外,它们的激子结合能高于在传统块体材料中观察到的激子结合能,同时又低于大多数其他二维材料,因而具有优异的光驱动性能。我们认为,这些替代性二维 P3¯m1Ca3N2、Ba3P2 和 Ba3As2 二元窄隙半导体将在红外光探测、安培极晶体管、医学成像、电极、光通信和遥感等纳米光电领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
期刊最新文献
Nonreciprocity of surface acoustic waves coupled to spin waves in a ferromagnetic bilayer with noncollinear layer magnetizations Experimental demonstration of deep-learning-enabled adaptive optics Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium Control of threshold voltages in Si/Si0.7Ge0.3 quantum devices via optical illumination Static quantum dot on a large potential hilltop for generating and analyzing hot electrons in the quantum Hall regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1