Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration
{"title":"Two-dimensional P3¯m1Ca3N2, Ba3P2, and Ba3As2: Promising stable narrow-gap semiconductors for infrared and broadband photodetectors","authors":"Qing-Yuan Chen, Fei-Jie Huang, Ju-Qi Ruan, Yi-Fen Zhao, Xiong-Fei Zhang, Kai Xiong, Yao He, CLEO Collaboration","doi":"10.1103/physrevapplied.22.034013","DOIUrl":null,"url":null,"abstract":"Exploring two-dimensional (2D) narrow-gap materials with exceptional stability and outstanding photoelectric performance has become a key focus in nano-optoelectronics. However, most existing 2D materials contain relatively large band gaps, and those with narrow band gaps tend to have inadequate stability. This study employed first-principles calculation to predict three alternative narrow-gap 2D binary group (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>II</mi><mn>3</mn></msub></math>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"normal\">V</mi></mrow><mn>2</mn></msub></math>) materials in the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mrow><mover><mn>3</mn><mo stretchy=\"false\">¯</mo></mover></mrow><mi>m</mi><mn>1</mn></math> space group: <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math>. All these materials exhibit excellent energetic, mechanical, dynamic, and thermal stability. Their mechanical properties reveal isotropic characteristics and demonstrate excellent in-plane stiffness and flexibility. Regarding electronic properties, monolayer <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math> possess indirect narrow band gaps of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.41</mn></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.61</mn></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0.68</mn></math> eV, respectively. Moreover, they exhibit high electron mobilities (about <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>3</mn></msup></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>4</mn></msup><mspace width=\"0.2em\"></mspace><msup><mi>cm</mi><mn>2</mn></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">V</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace width=\"0.2em\"></mspace><msup><mrow><mrow><mi mathvariant=\"normal\">s</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>) and are nearly isotropic. In terms of optical properties, they demonstrate a significantly broad absorption range, spanning from the IR to visible and UV regions, with remarkably high absorption coefficients (approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>4</mn></msup></math>–<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>5</mn></msup><mspace width=\"0.2em\"></mspace><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Additionally, their exciton binding energies are higher than those observed in traditional bulk materials while lower than most other 2D materials, facilitating excellent light-driven performance. We propose that these alternative 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>P</mi><mrow><mover><mn>3</mn><mo stretchy=\"false\">¯</mo></mover></mrow><mi>m</mi><mn>1</mn><mspace width=\"0.2em\"></mspace><msub><mi>Ca</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mrow><mi mathvariant=\"normal\">P</mi></mrow><mn>2</mn></msub></math>, and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ba</mi><mn>3</mn></msub><msub><mi>As</mi><mn>2</mn></msub></math> binary narrow-gap semiconductors will hold promising application prospects in nano-optoelectronic fields such as IR light detection, ambipolar transistors, medical imaging, electrodes, optical communication, and remote sensing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"180 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring two-dimensional (2D) narrow-gap materials with exceptional stability and outstanding photoelectric performance has become a key focus in nano-optoelectronics. However, most existing 2D materials contain relatively large band gaps, and those with narrow band gaps tend to have inadequate stability. This study employed first-principles calculation to predict three alternative narrow-gap 2D binary group (-) materials in the space group: , , and . All these materials exhibit excellent energetic, mechanical, dynamic, and thermal stability. Their mechanical properties reveal isotropic characteristics and demonstrate excellent in-plane stiffness and flexibility. Regarding electronic properties, monolayer , , and possess indirect narrow band gaps of , , and eV, respectively. Moreover, they exhibit high electron mobilities (about –) and are nearly isotropic. In terms of optical properties, they demonstrate a significantly broad absorption range, spanning from the IR to visible and UV regions, with remarkably high absorption coefficients (approximately –). Additionally, their exciton binding energies are higher than those observed in traditional bulk materials while lower than most other 2D materials, facilitating excellent light-driven performance. We propose that these alternative 2D , , and binary narrow-gap semiconductors will hold promising application prospects in nano-optoelectronic fields such as IR light detection, ambipolar transistors, medical imaging, electrodes, optical communication, and remote sensing.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.