{"title":"Implementation of Shor’s algorithm with a single photon in 32 dimensions","authors":"Hao-Cheng Weng, Chih-Sung Chuu","doi":"10.1103/physrevapplied.22.034003","DOIUrl":null,"url":null,"abstract":"Photonics has been a promising platform for implementing quantum technologies owing to its scalability and robustness. In this paper, we demonstrate the encoding of information in 32 time bins or dimensions of a single photon. A practical scheme for manipulating the single photon in high dimensions is experimentally realized to implement a compiled version of Shor’s algorithm on a single photon. Our work demonstrates the powerful information-processing capacity of a high-dimensional quantum system for complex quantum information tasks.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Photonics has been a promising platform for implementing quantum technologies owing to its scalability and robustness. In this paper, we demonstrate the encoding of information in 32 time bins or dimensions of a single photon. A practical scheme for manipulating the single photon in high dimensions is experimentally realized to implement a compiled version of Shor’s algorithm on a single photon. Our work demonstrates the powerful information-processing capacity of a high-dimensional quantum system for complex quantum information tasks.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.