Directional latent space representation for medical image segmentation

Xintao Liu, Yan Gao, Changqing Zhan, Qiao Wangr, Yu Zhang, Yi He, Hongyan Quan
{"title":"Directional latent space representation for medical image segmentation","authors":"Xintao Liu, Yan Gao, Changqing Zhan, Qiao Wangr, Yu Zhang, Yi He, Hongyan Quan","doi":"10.1007/s00371-024-03589-8","DOIUrl":null,"url":null,"abstract":"<p>Excellent medical image segmentation plays an important role in computer-aided diagnosis. Deep mining of pixel semantics is crucial for medical image segmentation. However, previous works on medical semantic segmentation usually overlook the importance of embedding subspace, and lacked the mining of latent space direction information. In this work, we construct global orthogonal bases and channel orthogonal bases in the latent space, which can significantly enhance the feature representation. We propose a novel distance-based segmentation method that decouples the embedding space into sub-embedding spaces of different classes, and then implements pixel level classification based on the distance between its embedding features and the origin of the subspace. Experiments on various public medical image segmentation benchmarks have shown that our model is superior compared to state-of-the-art methods. The code will be published at https://github.com/lxt0525/LSDENet.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03589-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Excellent medical image segmentation plays an important role in computer-aided diagnosis. Deep mining of pixel semantics is crucial for medical image segmentation. However, previous works on medical semantic segmentation usually overlook the importance of embedding subspace, and lacked the mining of latent space direction information. In this work, we construct global orthogonal bases and channel orthogonal bases in the latent space, which can significantly enhance the feature representation. We propose a novel distance-based segmentation method that decouples the embedding space into sub-embedding spaces of different classes, and then implements pixel level classification based on the distance between its embedding features and the origin of the subspace. Experiments on various public medical image segmentation benchmarks have shown that our model is superior compared to state-of-the-art methods. The code will be published at https://github.com/lxt0525/LSDENet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于医学图像分割的定向潜空间表示法
出色的医学图像分割在计算机辅助诊断中发挥着重要作用。像素语义的深度挖掘对于医学图像分割至关重要。然而,以往的医学语义分割研究通常忽略了嵌入子空间的重要性,缺乏对潜在空间方向信息的挖掘。在这项工作中,我们在潜空间中构建了全局正交基和通道正交基,这可以显著增强特征表示。我们提出了一种新颖的基于距离的分割方法,将嵌入空间解耦为不同类别的子嵌入空间,然后根据其嵌入特征与子空间原点之间的距离实现像素级分类。对各种公共医疗图像分割基准的实验表明,我们的模型优于最先进的方法。代码将发布在 https://github.com/lxt0525/LSDENet 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1