Joint Optimization of Service Caching and Task Offloading for Customer Application in MEC: A Hybrid SAC Scheme

IF 10.9 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Consumer Electronics Pub Date : 2024-08-13 DOI:10.1109/TCE.2024.3443168
Yang Xu;Ziyu Peng;Nanxi Song;Yu Qiu;Cheng Zhang;Yaoxue Zhang
{"title":"Joint Optimization of Service Caching and Task Offloading for Customer Application in MEC: A Hybrid SAC Scheme","authors":"Yang Xu;Ziyu Peng;Nanxi Song;Yu Qiu;Cheng Zhang;Yaoxue Zhang","doi":"10.1109/TCE.2024.3443168","DOIUrl":null,"url":null,"abstract":"Mobile Edge Computing (MEC), with advantages in high bandwidth and low latency, enables the development of numerous promising commercial services on edge servers near users. However, complex associations among users, servers and services require nontrivial collaboration to boost the performance of heterogeneous applications with diverse service requirements. In this paper, we study a joint task offloading and service caching problem in commercial MEC networks, aiming to minimize the delay and computational cost for all users. To this end, we first formulate the above issue as a complex optimization problem, and decompose it into two sub-problems for reducing computational complexity while maintaining its accuracy. Then, we propose a data-driven Hybrid Soft Actor-Critic scheme, where the deep reinforcement learning-based part determines the near-optimal service caching decisions, and the convex optimization technology-based part calculates the optimal offloading decisions. Finally, simulation results show that our proposed scheme improves the performance of accuracy and convergence when dealing with high-dimensional action spaces, and it outperforms the baseline schemes.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 2","pages":"6548-6560"},"PeriodicalIF":10.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634852/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile Edge Computing (MEC), with advantages in high bandwidth and low latency, enables the development of numerous promising commercial services on edge servers near users. However, complex associations among users, servers and services require nontrivial collaboration to boost the performance of heterogeneous applications with diverse service requirements. In this paper, we study a joint task offloading and service caching problem in commercial MEC networks, aiming to minimize the delay and computational cost for all users. To this end, we first formulate the above issue as a complex optimization problem, and decompose it into two sub-problems for reducing computational complexity while maintaining its accuracy. Then, we propose a data-driven Hybrid Soft Actor-Critic scheme, where the deep reinforcement learning-based part determines the near-optimal service caching decisions, and the convex optimization technology-based part calculates the optimal offloading decisions. Finally, simulation results show that our proposed scheme improves the performance of accuracy and convergence when dealing with high-dimensional action spaces, and it outperforms the baseline schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEC 中客户应用服务缓存和任务卸载的联合优化:混合 SAC 方案
移动边缘计算(MEC)具有高带宽和低延迟的优势,可以在用户附近的边缘服务器上开发许多有前途的商业服务。然而,用户、服务器和服务之间的复杂关联需要非凡的协作,以提高具有不同服务需求的异构应用程序的性能。本文研究了商用MEC网络中的联合任务卸载和服务缓存问题,目的是使所有用户的延迟和计算成本最小化。为此,我们首先将上述问题表述为一个复杂的优化问题,并将其分解为两个子问题,以便在保持其准确性的同时降低计算复杂度。然后,我们提出了一种数据驱动的混合软Actor-Critic方案,其中基于深度强化学习的部分确定接近最优的服务缓存决策,基于凸优化技术的部分计算最优的卸载决策。最后,仿真结果表明,该方案在处理高维动作空间时提高了精度和收敛性,优于基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
期刊最新文献
2025 Index IEEE Transactions on Consumer Electronics IEEE Consumer Technology Society Officers and Committee Chairs IEEE Consumer Technology Society Board of Governors Guest Editorial Sustainable Computing for Next-Generation Low-Carbon Agricultural Consumer Electronics IEEE Consumer Technology Society Board of Governors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1