Josie A Christopher, Lisa M Breckels, Oliver M Crook, Mercedes Vazquez-Chantada, Derek Barratt, Kathryn Susan Lilley
{"title":"Global proteomics indicates subcellular-specific anti-ferroptotic responses to ionizing radiation","authors":"Josie A Christopher, Lisa M Breckels, Oliver M Crook, Mercedes Vazquez-Chantada, Derek Barratt, Kathryn Susan Lilley","doi":"10.1101/2024.09.12.611851","DOIUrl":null,"url":null,"abstract":"Cells have many protective mechanisms against background levels of ionizing radiation (IR) orchestrated by molecular changes in expression, post-translation modifications and subcellular localization. Radiotherapeutic treatment in oncology attempts to overwhelm such mechanisms, but radio-resistance is an ongoing challenge. Here, global subcellular proteomics combined with Bayesian modelling identified 544 differentially localized proteins in A549 cells upon 6 Gy x-ray exposure, revealing subcellular-specific changes of proteins involved in ferroptosis, an iron-dependent cell death, suggestive of potential radio-resistance mechanisms. These observations were independent of expression changes, emphasizing the utility of global subcellular proteomics and the promising prospect of ferroptosis-inducing therapies for combatting radioresistance.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"311 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.611851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cells have many protective mechanisms against background levels of ionizing radiation (IR) orchestrated by molecular changes in expression, post-translation modifications and subcellular localization. Radiotherapeutic treatment in oncology attempts to overwhelm such mechanisms, but radio-resistance is an ongoing challenge. Here, global subcellular proteomics combined with Bayesian modelling identified 544 differentially localized proteins in A549 cells upon 6 Gy x-ray exposure, revealing subcellular-specific changes of proteins involved in ferroptosis, an iron-dependent cell death, suggestive of potential radio-resistance mechanisms. These observations were independent of expression changes, emphasizing the utility of global subcellular proteomics and the promising prospect of ferroptosis-inducing therapies for combatting radioresistance.