Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection
{"title":"Evolutionary computation-based self-supervised learning for image processing: a big data-driven approach to feature extraction and fusion for multispectral object detection","authors":"Xiaoyang Shen, Haibin Li, Achyut Shankar, Wattana Viriyasitavat, Vinay Chamola","doi":"10.1186/s40537-024-00988-5","DOIUrl":null,"url":null,"abstract":"<p>The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"6 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00988-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The image object recognition and detection technology are widely used in many scenarios. In recent years, big data has become increasingly abundant, and big data-driven artificial intelligence models have attracted more and more attention. Evolutionary computation has also provided a powerful driving force for the optimization and improvement of deep learning models. In this paper, we propose an image object detection method based on self-supervised and data-driven learning. Differ from other methods, our approach stands out due to its innovative use of multispectral data fusion and evolutionary computation for model optimization. Specifically, our method uniquely combines visible light images and infrared images to detect and identify image targets. Firstly, we utilize a self-supervised learning method and the AutoEncoder model to perform high-dimensional feature extraction on the two types of images. Secondly, we fuse the extracted features from the visible light and infrared images to detect and identify objects. Thirdly, we introduce a model parameter optimization method using evolutionary learning algorithms to enhance model performance. Validation on public datasets shows that our method achieves comparable or superior performance to existing methods.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.