Microarchitectural comparison and in-core modeling of state-of-the-art CPUs: Grace, Sapphire Rapids, and Genoa

Jan Laukemann, Georg Hager, Gerhard Wellein
{"title":"Microarchitectural comparison and in-core modeling of state-of-the-art CPUs: Grace, Sapphire Rapids, and Genoa","authors":"Jan Laukemann, Georg Hager, Gerhard Wellein","doi":"arxiv-2409.08108","DOIUrl":null,"url":null,"abstract":"With Nvidia's release of the Grace Superchip, all three big semiconductor\ncompanies in HPC (AMD, Intel, Nvidia) are currently competing in the race for\nthe best CPU. In this work we analyze the performance of these state-of-the-art\nCPUs and create an accurate in-core performance model for their\nmicroarchitectures Zen 4, Golden Cove, and Neoverse V2, extending the Open\nSource Architecture Code Analyzer (OSACA) tool and comparing it with LLVM-MCA.\nStarting from the peculiarities and up- and downsides of a single core, we\nextend our comparison by a variety of microbenchmarks and the capabilities of a\nfull node. The \"write-allocate (WA) evasion\" feature, which can automatically\nreduce the memory traffic caused by write misses, receives special attention;\nwe show that the Grace Superchip has a next-to-optimal implementation of WA\nevasion, and that the only way to avoid write allocates on Zen 4 is the\nexplicit use of non-temporal stores.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With Nvidia's release of the Grace Superchip, all three big semiconductor companies in HPC (AMD, Intel, Nvidia) are currently competing in the race for the best CPU. In this work we analyze the performance of these state-of-the-art CPUs and create an accurate in-core performance model for their microarchitectures Zen 4, Golden Cove, and Neoverse V2, extending the Open Source Architecture Code Analyzer (OSACA) tool and comparing it with LLVM-MCA. Starting from the peculiarities and up- and downsides of a single core, we extend our comparison by a variety of microbenchmarks and the capabilities of a full node. The "write-allocate (WA) evasion" feature, which can automatically reduce the memory traffic caused by write misses, receives special attention; we show that the Grace Superchip has a next-to-optimal implementation of WA evasion, and that the only way to avoid write allocates on Zen 4 is the explicit use of non-temporal stores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最先进 CPU 的微架构比较和内核建模:格雷斯、蓝宝石急流和热那亚
随着 Nvidia 发布 Grace 超级芯片,HPC 领域的三大半导体公司(AMD、Intel 和 Nvidia)目前都在争夺最佳 CPU。在这项工作中,我们分析了这些最先进 CPU 的性能,并为它们的微架构 Zen 4、Golden Cove 和 Neoverse V2 建立了精确的内核性能模型,扩展了开源架构代码分析器(OSACA)工具,并与 LLVM-MCA 进行了比较。我们特别关注了 "写分配(WA)规避 "功能,该功能可以自动减少写未命中造成的内存流量;我们证明了格雷斯超级芯片拥有近乎最佳的 "WA规避 "实现,而在 Zen 4 上避免写分配的唯一方法是明确使用非时态存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1