{"title":"A MIP-heuristic approach for solving a bi-objective optimization model for integrated production planning of sugarcane and energy-cane","authors":"Gilmar Tolentino, Antônio Roberto Balbo, Sônia Cristina Poltroniere, Angelo Aliano Filho, Helenice de Oliveira Florentino","doi":"10.1007/s10479-024-06229-5","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a modeling and solution approach for the integrated planning of the planting and harvesting of sucrose cane and energy-cane considering multiple harvesters. An integer linear bi-objective optimization model is proposed, which seeks to find a trade-off between the maximization of the production volumes of sucrose and fiber and the minimization of the operational costs. The model considers the technical constraints of the mill, such as the milling capacity and meeting the monthly demand. A MIP-heuristic based on relax-and-fix and fix-and-optimize strategies with exact decomposition is appropriately proposed to determine approximations to Pareto optimal solutions to this problem. These approximations are used as incumbents for a branch-and-bound tree to generate potentially Pareto optimal solutions. The results reveal that the MIP-heuristic efficiently solves the problem for real and semi-random instances, generating approximate solutions with a reduced error and a reasonable computational effort. Moreover, the different solutions quantify the trade-off between cost and production volume, opening up the possibility of increasing sucrose and fiber content or decreasing the costs of solutions found. Thus, the proposed bi-objective approach, the solution technique and the different Pareto optimal solutions obtained can assist mill managers in making better decisions in sugarcane production.\n</p>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10479-024-06229-5","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a modeling and solution approach for the integrated planning of the planting and harvesting of sucrose cane and energy-cane considering multiple harvesters. An integer linear bi-objective optimization model is proposed, which seeks to find a trade-off between the maximization of the production volumes of sucrose and fiber and the minimization of the operational costs. The model considers the technical constraints of the mill, such as the milling capacity and meeting the monthly demand. A MIP-heuristic based on relax-and-fix and fix-and-optimize strategies with exact decomposition is appropriately proposed to determine approximations to Pareto optimal solutions to this problem. These approximations are used as incumbents for a branch-and-bound tree to generate potentially Pareto optimal solutions. The results reveal that the MIP-heuristic efficiently solves the problem for real and semi-random instances, generating approximate solutions with a reduced error and a reasonable computational effort. Moreover, the different solutions quantify the trade-off between cost and production volume, opening up the possibility of increasing sucrose and fiber content or decreasing the costs of solutions found. Thus, the proposed bi-objective approach, the solution technique and the different Pareto optimal solutions obtained can assist mill managers in making better decisions in sugarcane production.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.