Suman Sarkar, Papiya Debnath, Debashis De, Manash Chanda
{"title":"DFT analysis of Re-modified WSe2 monolayers for adsorption of CO, C2H2, and C2H4","authors":"Suman Sarkar, Papiya Debnath, Debashis De, Manash Chanda","doi":"10.1088/1361-651x/ad6fbe","DOIUrl":null,"url":null,"abstract":"The sensing performances of the Rhenium (Re) doped Tungsten Diselenide (WSe<sub>2</sub>) monolayer for detecting small gas molecules such as carbon monoxide (CO), acetylene (C<sub>2</sub>H<sub>2</sub>), and ethylene (C<sub>2</sub>H<sub>4</sub>) have been analyzed in this paper. Density functional theory and non-equilibrium Green’s function have been used to examine the electrical and geometric structures of re-adorned WSe<sub>2</sub> monolayer when subjected to dissolved gas analysis gases in the transformer oil. Hence, the electrochemical characteristics like Band diagram and density of states are detailed. Adsorption systems’ recovery capabilities, Mulliken population, and adsorption energy have been examined to determine their stability. Studies also show that Re-doped WSe<sub>2</sub> monolayer exerts deformation and as a result, the band gap narrowed down. At ambient temperature (273 K–300 K), the Re-doped WSe<sub>2</sub> exhibits better adsorption of C<sub>2</sub>H<sub>4</sub> over C<sub>2</sub>H<sub>2</sub> and CO as the C<sub>2</sub>H<sub>4</sub> has higher adsorption energy compared to the C<sub>2</sub>H<sub>2</sub> and CO. Besides, <italic toggle=\"yes\">V–I</italic> characteristics of the Re doped WSe<sub>2</sub> layer after adsorption of the CO, C<sub>2</sub>H<sub>2</sub>, and C<sub>2</sub>H<sub>4</sub> are detailed which signifies the efficacy of the Re doped WSe<sub>2</sub> monolayer.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"53 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad6fbe","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sensing performances of the Rhenium (Re) doped Tungsten Diselenide (WSe2) monolayer for detecting small gas molecules such as carbon monoxide (CO), acetylene (C2H2), and ethylene (C2H4) have been analyzed in this paper. Density functional theory and non-equilibrium Green’s function have been used to examine the electrical and geometric structures of re-adorned WSe2 monolayer when subjected to dissolved gas analysis gases in the transformer oil. Hence, the electrochemical characteristics like Band diagram and density of states are detailed. Adsorption systems’ recovery capabilities, Mulliken population, and adsorption energy have been examined to determine their stability. Studies also show that Re-doped WSe2 monolayer exerts deformation and as a result, the band gap narrowed down. At ambient temperature (273 K–300 K), the Re-doped WSe2 exhibits better adsorption of C2H4 over C2H2 and CO as the C2H4 has higher adsorption energy compared to the C2H2 and CO. Besides, V–I characteristics of the Re doped WSe2 layer after adsorption of the CO, C2H2, and C2H4 are detailed which signifies the efficacy of the Re doped WSe2 monolayer.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.