Kinematic performance evaluation method of a 3-DOF redundantly actuated parallel manipulator

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Mechanical Science and Technology Pub Date : 2024-09-04 DOI:10.1007/s12206-024-0841-2
Yunfeng Jian, Guang Yu, Jun Wu, Bin Zhu, Yanling Tian
{"title":"Kinematic performance evaluation method of a 3-DOF redundantly actuated parallel manipulator","authors":"Yunfeng Jian, Guang Yu, Jun Wu, Bin Zhu, Yanling Tian","doi":"10.1007/s12206-024-0841-2","DOIUrl":null,"url":null,"abstract":"<p>Error transformation can be used to evaluate the kinematic performance of a parallel manipulator. However, the terminal error of redundantly actuated parallel manipulators is difficult to calculate from joint errors. This paper proposes a method to approximate the terminal error of a redundantly actuated parallel manipulator by taking the minimum terminal error among all corresponding nonredundant counterparts. The local Frobenius norm index (LFNI) is proposed to estimate the expectation of terminal error. Additionally, the global Frobenius norm index (GFNI) is introduced to describe the worst case of terminal error in the workspace, which is then used for the optimum design of a RPU-UPR-2UPU redundantly actuated parallel manipulator. After the optimum design, the average root mean square error of the manipulator is reduced. Furthermore, a control mode determination strategy for allocating force/position control to a certain chain is also proposed to minimize the terminal error, whose effectiveness is validated through simulation.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0841-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Error transformation can be used to evaluate the kinematic performance of a parallel manipulator. However, the terminal error of redundantly actuated parallel manipulators is difficult to calculate from joint errors. This paper proposes a method to approximate the terminal error of a redundantly actuated parallel manipulator by taking the minimum terminal error among all corresponding nonredundant counterparts. The local Frobenius norm index (LFNI) is proposed to estimate the expectation of terminal error. Additionally, the global Frobenius norm index (GFNI) is introduced to describe the worst case of terminal error in the workspace, which is then used for the optimum design of a RPU-UPR-2UPU redundantly actuated parallel manipulator. After the optimum design, the average root mean square error of the manipulator is reduced. Furthermore, a control mode determination strategy for allocating force/position control to a certain chain is also proposed to minimize the terminal error, whose effectiveness is validated through simulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-DOF 冗余致动平行机械手的运动性能评估方法
误差变换可用于评估并联机械手的运动性能。然而,冗余致动并联机械手的终端误差很难通过关节误差计算出来。本文提出了一种方法,通过取所有对应非冗余并联操纵器中的最小终端误差来近似计算冗余致动并联操纵器的终端误差。本文提出了局部弗罗贝尼斯规范指数(LFNI)来估计终端误差的期望值。此外,还引入了全局弗罗贝尼斯准则指数(GFNI)来描述工作空间中终端误差的最坏情况,然后用于 RPU-UPR-2UPU 冗余致动并联机械手的优化设计。优化设计后,机械手的平均均方根误差降低了。此外,还提出了一种将力/位置控制分配给特定链的控制模式确定策略,以最大限度地减少终端误差,并通过仿真验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mechanical Science and Technology
Journal of Mechanical Science and Technology 工程技术-工程:机械
CiteScore
2.90
自引率
6.20%
发文量
517
审稿时长
7.7 months
期刊介绍: The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering. Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.
期刊最新文献
Numerical study of the sand distribution inside a diesel locomotive operating in wind-blown sand environment Inter electrode gap detection in electrochemical machining with electroforming planar coils Assessment of the mathematical modelling of thermophysical properties during the pyrolysis of coking coals Generative models for tabular data: A review Kriging-PSO-based shape optimization for railway wheel profile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1