{"title":"Study on anthropomorphic hand with biological and kinematic characteristics of the human hand","authors":"Shuai Ma, Haoyi Qin, Jiafeng Song, Kejun Wang, Shucai Xu","doi":"10.1007/s12206-024-0840-3","DOIUrl":null,"url":null,"abstract":"<p>The actuation of traditional anthropomorphic hands is relatively complex, and there is little research on humanoid skin. In view of the above problems, this study proposed an anthropomorphic hand with biological and kinematic characteristics of the human hand, including structural skeletal parts and humanoid skin. Firstly, the overall structure and control system of the anthropomorphic hand were designed. Then, the humanoid skin was fabricated and its physical and mechanical properties were tested. Based on the overall structure of the rope-driven anthropomorphic hand, its motion characteristics were simulated and analyzed using multi-body dynamics software ADAMS/Cable. Finally, control experiment verifies the performance of the anthropomorphic hand described in this paper. The results are that the proposed anthropomorphic hand can reproduce the movement characteristics of the human hand well, and can grip objects of different shapes, different sizes and different weights stably, with a maximum grip force of 11.91 N measured.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0840-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The actuation of traditional anthropomorphic hands is relatively complex, and there is little research on humanoid skin. In view of the above problems, this study proposed an anthropomorphic hand with biological and kinematic characteristics of the human hand, including structural skeletal parts and humanoid skin. Firstly, the overall structure and control system of the anthropomorphic hand were designed. Then, the humanoid skin was fabricated and its physical and mechanical properties were tested. Based on the overall structure of the rope-driven anthropomorphic hand, its motion characteristics were simulated and analyzed using multi-body dynamics software ADAMS/Cable. Finally, control experiment verifies the performance of the anthropomorphic hand described in this paper. The results are that the proposed anthropomorphic hand can reproduce the movement characteristics of the human hand well, and can grip objects of different shapes, different sizes and different weights stably, with a maximum grip force of 11.91 N measured.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.