Lightweight CrxV0.5Nb0.5ZrTi Refractory High-Entropy Alloys: Microstructure and Mechanical Properties

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY JOM Pub Date : 2024-08-12 DOI:10.1007/s11837-024-06795-w
Lin Yang, Xuelei Yang, Cun Zhang, Chenxi Gu, Lu Wang
{"title":"Lightweight CrxV0.5Nb0.5ZrTi Refractory High-Entropy Alloys: Microstructure and Mechanical Properties","authors":"Lin Yang,&nbsp;Xuelei Yang,&nbsp;Cun Zhang,&nbsp;Chenxi Gu,&nbsp;Lu Wang","doi":"10.1007/s11837-024-06795-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated two lightweight Cr<sub><i>x</i></sub>V<sub>0.5</sub>Nb<sub>0.5</sub>ZrTi (<i>x</i> = 0.1 and 0.3) refractory high-entropy alloys to understand the relationship between phase composition, microstructure, and mechanical properties. The addition of Cr resulted in a transition from a single-phase BCC structure of the base alloy V<sub>0.5</sub>Nb<sub>0.5</sub>ZrTi to a multiphase structure comprising BCC and Cr-rich Laves phases in the Cr<sub><i>x</i></sub>V<sub>0.5</sub>Nb<sub>0.5</sub>ZrTi alloys. The microstructure exhibited a typical dendritic pattern, consisting of BCC dendrites and Cr-rich Laves interdendrites. The area fraction of the Cr-rich Laves phase increased from 5% to 28% with the increase in Cr content. This increase led to elevated yield strength values, rising from 1100 ± 20 MPa to 1330 ± 30 MPa. The primary mechanisms contributing to the mechanical properties were solid-solution strengthening from the BCC phase and the formation of a small amount of hard Laves phase. These mechanisms, combined with the low density of the alloys, resulted in an excellent combination of specific yield strength and plasticity in the Cr<sub>0.1</sub>V<sub>0.5</sub>Nb<sub>0.5</sub>ZrTi alloy. Specifically, it exhibited a specific yield strength of 180 MPa cm<sup>3</sup>/g and over 40% plastic strain without fracture. Overall, the study provides insights into the design and development of lightweight refractory high-entropy alloys with desirable mechanical properties for various engineering applications.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 10","pages":"5991 - 6001"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06795-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated two lightweight CrxV0.5Nb0.5ZrTi (x = 0.1 and 0.3) refractory high-entropy alloys to understand the relationship between phase composition, microstructure, and mechanical properties. The addition of Cr resulted in a transition from a single-phase BCC structure of the base alloy V0.5Nb0.5ZrTi to a multiphase structure comprising BCC and Cr-rich Laves phases in the CrxV0.5Nb0.5ZrTi alloys. The microstructure exhibited a typical dendritic pattern, consisting of BCC dendrites and Cr-rich Laves interdendrites. The area fraction of the Cr-rich Laves phase increased from 5% to 28% with the increase in Cr content. This increase led to elevated yield strength values, rising from 1100 ± 20 MPa to 1330 ± 30 MPa. The primary mechanisms contributing to the mechanical properties were solid-solution strengthening from the BCC phase and the formation of a small amount of hard Laves phase. These mechanisms, combined with the low density of the alloys, resulted in an excellent combination of specific yield strength and plasticity in the Cr0.1V0.5Nb0.5ZrTi alloy. Specifically, it exhibited a specific yield strength of 180 MPa cm3/g and over 40% plastic strain without fracture. Overall, the study provides insights into the design and development of lightweight refractory high-entropy alloys with desirable mechanical properties for various engineering applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻质 CrxV0.5Nb0.5ZrTi 难熔高熵合金:显微结构和机械性能
本研究调查了两种轻质 CrxV0.5Nb0.5ZrTi(x = 0.1 和 0.3)难熔高熵合金,以了解相组成、微观结构和机械性能之间的关系。添加铬后,在 CrxV0.5Nb0.5ZrTi 合金中,基合金 V0.5Nb0.5ZrTi 的单相 BCC 结构转变为由 BCC 相和富铬 Laves 相组成的多相结构。微观结构呈现出典型的树枝状,由 BCC 树枝状和富铬 Laves 树枝状组成。随着铬含量的增加,富铬 Laves 相的面积分数从 5% 增加到 28%。这种增加导致屈服强度值升高,从 1100 ± 20 兆帕升至 1330 ± 30 兆帕。提高机械性能的主要机制是 BCC 相的固溶强化和少量硬质 Laves 相的形成。这些机制与合金的低密度相结合,使 Cr0.1V0.5Nb0.5ZrTi 合金的比屈服强度和塑性得到了很好的结合。具体来说,该合金的比屈服强度达到 180 兆帕 cm3/g,塑性应变超过 40%,且不会发生断裂。总之,该研究为设计和开发具有理想机械性能的轻质耐火高熵合金提供了见解,适用于各种工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
期刊最新文献
Review of Solid-State Consolidation Processing Techniques of ODS Steels (Hot Extrusion, Hot Isostatic Pressing, Spark Plasma Sintering, and Stir Friction Consolidation): Resulting Microstructures and Mechanical Properties TMS Meeting Headlines In the Final Analysis Optimizing CZ Silicon Crystal Growth: Algorithmic Approach for Defect Minimization Exploration of Microstructural and Physical Characteristics in a Newly Formulated Ceramic Utilizing Kaolin and Waste MgO-C Refractory Bricks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1