Minimization of detent force in PMLSM by end magnetic regulating module with free topologies

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-09-10 DOI:10.1063/5.0232229
Xiaozhuo Xu, Kai Hua, Haichao Feng, Siyuan Jiang, Yunji Zhao
{"title":"Minimization of detent force in PMLSM by end magnetic regulating module with free topologies","authors":"Xiaozhuo Xu, Kai Hua, Haichao Feng, Siyuan Jiang, Yunji Zhao","doi":"10.1063/5.0232229","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for suppressing the detent force of permanent magnet linear synchronous motors is proposed. First, the end force is adjusted to offset the cogging force while the cogging force remains unchanged. On the other hand, the proposed method can arbitrarily change the shape of the end magnetic regulating module (EMRM), thus allowing the end force to obtain a wider adjustment range, which is different from the conventional limited shape optimization. More interestingly, compared to the traditional approach for suppressing the end force, which is to suppress the end force to the lowest level, the proposed method does not necessarily suppress the end force to the lowest level, but rather adjusts it to a reasonable level, so that it can offset the cogging force. This leads to the fact that the optimized end magnetic regulating module is effective in adjusting the end force and may even increase the end force, which is different from the conventional idea of suppressing the detent force. Next, the optimal EMRM's topologies are solved using the optimization algorithm, which replaces the traditional low-dimensional single-direction optimization and performs multi-direction global search. Finally, the prototype with optimal EMRM's topology and the testing platform are established and the experimental results validate the effectiveness of the proposed method.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0232229","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel method for suppressing the detent force of permanent magnet linear synchronous motors is proposed. First, the end force is adjusted to offset the cogging force while the cogging force remains unchanged. On the other hand, the proposed method can arbitrarily change the shape of the end magnetic regulating module (EMRM), thus allowing the end force to obtain a wider adjustment range, which is different from the conventional limited shape optimization. More interestingly, compared to the traditional approach for suppressing the end force, which is to suppress the end force to the lowest level, the proposed method does not necessarily suppress the end force to the lowest level, but rather adjusts it to a reasonable level, so that it can offset the cogging force. This leads to the fact that the optimized end magnetic regulating module is effective in adjusting the end force and may even increase the end force, which is different from the conventional idea of suppressing the detent force. Next, the optimal EMRM's topologies are solved using the optimization algorithm, which replaces the traditional low-dimensional single-direction optimization and performs multi-direction global search. Finally, the prototype with optimal EMRM's topology and the testing platform are established and the experimental results validate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过自由拓扑结构的端磁调节模块最大限度降低 PMLSM 中的棘爪力
本文提出了一种抑制永磁直线同步电机棘爪力的新方法。首先,在齿槽力保持不变的情况下,调整端面力以抵消齿槽力。另一方面,所提出的方法可以任意改变端磁调节模块(EMRM)的形状,从而使端力获得更宽的调节范围,这与传统的有限形状优化不同。更有趣的是,与传统的抑制末端力的方法--将末端力抑制到最低水平--相比,所提出的方法并不一定将末端力抑制到最低水平,而是将其调整到一个合理的水平,使其能够抵消齿槽力。这就导致优化后的端面磁调节模块能有效调节端面力,甚至可能增加端面力,这与传统的抑制棘爪力的思路不同。接下来,使用优化算法求解最佳电磁调节器拓扑结构,该算法取代了传统的低维单方向优化,而是执行多方向全局搜索。最后,建立了具有最优 EMRM 拓扑结构的原型和测试平台,实验结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides Permittivity enhancement of Al2O3/ZrO2 dielectrics with the incorporation of Pt nanoparticles Minimization of detent force in PMLSM by end magnetic regulating module with free topologies Magnetic tunnel junctions with superlattice barriers Theoretical prediction of chalcogen-based Janus monolayers for self-powered optoelectronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1