{"title":"Investigation of computational model for the natural circulation at dual channel facility","authors":"","doi":"10.1016/j.net.2024.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>The current work investigates a computational model to study the thermal and hydraulic air behavior during the natural circulation at air ingression and accidents. This is done with the RHYS coupling ASYST VER 4 package. The test facility considered for the present study is a dual vertical channel facility comprised of two parallel channels connected to the upper and lower plenum. The flow fields in the heated and cooled channels were comprehensively characterized by analyzing axial temperature and velocity distributions using varied uniform iso-flux (100–1400 W/m<sup>2</sup>) and different outer surface temperatures (278, 288, 298, and 308 K). Temperature and velocity reversal recorded after maximal spots due to natural convection. The temperature rise from 278 to 308 K gave an average of 25.51 and 25.19° increase in air and inner wall temperatures, respectively, while air velocity increases at high cooling intensity (278 K) within the heated channel, in the cooled channel, low cooling intensity (308 K) resulted in higher velocity. The convective heat transfer is represented in terms of heat transfer coefficients, which are used to compute the Nusselt number. Additionally, the ASYST model was validated with data from literature sources, indicating strong agreement.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324004145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The current work investigates a computational model to study the thermal and hydraulic air behavior during the natural circulation at air ingression and accidents. This is done with the RHYS coupling ASYST VER 4 package. The test facility considered for the present study is a dual vertical channel facility comprised of two parallel channels connected to the upper and lower plenum. The flow fields in the heated and cooled channels were comprehensively characterized by analyzing axial temperature and velocity distributions using varied uniform iso-flux (100–1400 W/m2) and different outer surface temperatures (278, 288, 298, and 308 K). Temperature and velocity reversal recorded after maximal spots due to natural convection. The temperature rise from 278 to 308 K gave an average of 25.51 and 25.19° increase in air and inner wall temperatures, respectively, while air velocity increases at high cooling intensity (278 K) within the heated channel, in the cooled channel, low cooling intensity (308 K) resulted in higher velocity. The convective heat transfer is represented in terms of heat transfer coefficients, which are used to compute the Nusselt number. Additionally, the ASYST model was validated with data from literature sources, indicating strong agreement.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development