Improving an Alternative Glycerol Catabolism Pathway in Yarrowia lipolytica to Enhance Erythritol Production

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Yeast Pub Date : 2024-09-12 DOI:10.1002/yea.3980
Feng Liu, Jing‐Tao Tian, Ya‐Ting Wang, Lingxuan Zhao, Zhijie Liu, Jun Chen, Liu‐Jing Wei, Patrick Fickers, Qiang Hua
{"title":"Improving an Alternative Glycerol Catabolism Pathway in Yarrowia lipolytica to Enhance Erythritol Production","authors":"Feng Liu, Jing‐Tao Tian, Ya‐Ting Wang, Lingxuan Zhao, Zhijie Liu, Jun Chen, Liu‐Jing Wei, Patrick Fickers, Qiang Hua","doi":"10.1002/yea.3980","DOIUrl":null,"url":null,"abstract":"Engineering the glycerol‐3‐phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in <jats:italic>Yarrowia lipolytica</jats:italic>. Herein, this route was identified and characterized in <jats:italic>Y. lipolytica</jats:italic> by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by <jats:italic>dak2</jats:italic> was identified as the rate‐limiting step. By combining NHEJ‐mediated insertion mutagenesis with a push‐and‐pull strategy, <jats:italic>Y. lipolytica</jats:italic> strains with high‐yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1‐ and 4.2‐fold of starting strain.","PeriodicalId":23870,"journal":{"name":"Yeast","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3980","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering the glycerol‐3‐phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y. lipolytica by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by dak2 was identified as the rate‐limiting step. By combining NHEJ‐mediated insertion mutagenesis with a push‐and‐pull strategy, Y. lipolytica strains with high‐yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1‐ and 4.2‐fold of starting strain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进脂肪分解酵母中的另一种甘油分解途径以提高赤藓糖醇产量
对甘油-3-磷酸途径进行工程改造可通过加速甘油吸收来提高赤藓糖醇的产量。然而,人们对脂肪分解亚罗威亚菌中的二羟基丙酮(DHA)替代途径研究甚少。本文通过代谢组学和转录组学分析,确定并描述了脂肪溶解酵母中的这一途径。此外,由 dak2 编码的二羟丙酮激酶催化的反应被确定为限速步骤。通过将 NHEJ 介导的插入突变与推拉策略相结合,获得了能从甘油中高产合成赤藓糖醇的溶脂芽孢杆菌菌株。通过筛选插入突变体文库,确定了赤藓糖醇产量提高四倍的突变体。过表达 DAK2 和甘油脱氢酶 GCY3 以及磷酸戊糖途径非氧化部分的反酮醇酶和反醛醇酶基因,可进一步提高菌株的产量,滴度为 53.1 克/升,甘油产量为 0.56 克/克,分别是起始菌株的 8.1 倍和 4.2 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
期刊最新文献
The Hidden Global Diversity of the Yeast Genus Carlosrosaea: A Biodiversity Databases Perspective. Role of Oral Yeast in Replenishing Gastric Mucosa with Yeast and Helicobacter pylori. pSPObooster: A Plasmid System to Improve Sporulation Efficiency of Saccharomyces cerevisiae Lab Strains. The 5-Fluorouracil RNA Expression Viewer (5-FUR) Facilitates Interpreting the Effects of Drug Treatment and RRP6 Deletion on the Transcriptional Landscape in Yeast. Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1