Hai Du, Hongping Gui, Gang Li, Peng Qiao, Hao Jiang, Zhangyi Yang, Bin Qi
{"title":"Research on airfoil surface flow structure testing based on Tuft velocity measurement method","authors":"Hai Du, Hongping Gui, Gang Li, Peng Qiao, Hao Jiang, Zhangyi Yang, Bin Qi","doi":"10.1177/09544100241274849","DOIUrl":null,"url":null,"abstract":"Fluorescent tuft visualization technology, as a practical and convenient technique, has attracted widespread attention. In this study, a novel fluorescent tuft velocity measurement method is developed based on existing technologies. This method involves the recognition of tuft deflection angles, image transformation, block processing, temporal averaging, and post-visualization processing. Additionally, quantitative measurement of flow field velocity is achieved through tuft calibration. The study begins by comparing tufts of different materials, examining both fluorescent and deflection characteristics to determine optimal tuft parameters. The impact of tuft length on deflection characteristics is also investigated. Finally, the cotton tuft with a length of 7 mm and a diameter of about 0.1 mm was obtained as the best tuft sought in this experiment. Subsequently, at Reynolds number Re = 1.7 × 10<jats:sup>5</jats:sup>, airfoil surface flow field visualization and quantitative analysis are conducted, exploring the relationship between airfoil surface flow structure and aerodynamics at different angles of attack. Finally, a comparative study is conducted between tuft velocity results and oil flow visualization experiments, as well as particle image velocimetry experiments, confirming the feasibility of the fluorescent tuft velocity measurement method.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241274849","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent tuft visualization technology, as a practical and convenient technique, has attracted widespread attention. In this study, a novel fluorescent tuft velocity measurement method is developed based on existing technologies. This method involves the recognition of tuft deflection angles, image transformation, block processing, temporal averaging, and post-visualization processing. Additionally, quantitative measurement of flow field velocity is achieved through tuft calibration. The study begins by comparing tufts of different materials, examining both fluorescent and deflection characteristics to determine optimal tuft parameters. The impact of tuft length on deflection characteristics is also investigated. Finally, the cotton tuft with a length of 7 mm and a diameter of about 0.1 mm was obtained as the best tuft sought in this experiment. Subsequently, at Reynolds number Re = 1.7 × 105, airfoil surface flow field visualization and quantitative analysis are conducted, exploring the relationship between airfoil surface flow structure and aerodynamics at different angles of attack. Finally, a comparative study is conducted between tuft velocity results and oil flow visualization experiments, as well as particle image velocimetry experiments, confirming the feasibility of the fluorescent tuft velocity measurement method.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).