Improving agent performance in fluid environments by perceptual pretraining

Jin Zhang, Jianyang Xue, Bochao Cao
{"title":"Improving agent performance in fluid environments by perceptual pretraining","authors":"Jin Zhang, Jianyang Xue, Bochao Cao","doi":"arxiv-2409.03230","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a pretraining framework for fluid environment\nperception, which includes an information compression model and the\ncorresponding pretraining method. We test this framework in a two-cylinder\nproblem through numerical simulation. The results show that after unsupervised\npretraining with this framework, the intelligent agent can acquire key features\nof surrounding fluid environment, thereby adapting more quickly and effectively\nto subsequent multi-scenario tasks. In our research, these tasks include\nperceiving the position of the upstream obstacle and actively avoiding shedding\nvortices in the flow field to achieve drag reduction. Better performance of the\npretrained agent is discussed in the sensitivity analysis.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct a pretraining framework for fluid environment perception, which includes an information compression model and the corresponding pretraining method. We test this framework in a two-cylinder problem through numerical simulation. The results show that after unsupervised pretraining with this framework, the intelligent agent can acquire key features of surrounding fluid environment, thereby adapting more quickly and effectively to subsequent multi-scenario tasks. In our research, these tasks include perceiving the position of the upstream obstacle and actively avoiding shedding vortices in the flow field to achieve drag reduction. Better performance of the pretrained agent is discussed in the sensitivity analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过感知预训练提高代理在流体环境中的性能
本文构建了一个流体环境感知预训练框架,其中包括一个信息压缩模型和相应的预训练方法。我们通过数值模拟在双缸问题中测试了这一框架。结果表明,在使用该框架进行无监督预训练后,智能代理可以获得周围流体环境的关键特征,从而更快、更有效地适应后续的多场景任务。在我们的研究中,这些任务包括感知上游障碍物的位置和主动避开流场中的脱落涡流以减少阻力。灵敏度分析中讨论了经过训练的代理的更佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1