Yue Yue, Yiying Tao, Jiaxin Wang, Shidi Zhao, Fan Zhao, Lei Shen, Ling Zhou
{"title":"Circulating Exosomes Studied by Label-free Proteomics Analysis Reveal Transition Signatures from Diabetes Mellitus to Diabetic Kidney Disease","authors":"Yue Yue, Yiying Tao, Jiaxin Wang, Shidi Zhao, Fan Zhao, Lei Shen, Ling Zhou","doi":"10.2174/0115701646309538240805093732","DOIUrl":null,"url":null,"abstract":"Background: Diabetic kidney disease (DKD) is a common microvascular complication of diabetic mellitus (DM). At present, the early diagnosis of DKD mainly depends on microalbuminuria, which is prone to be affected by confounding factors such as urinary tract infections. Methods: To identify the more stable early diagnosis markers, the whole proteome in the circulating exosomes from controls, DM patients, and DKD patients was quantified by label-free proteomics analysis and then validated with parallel reaction monitoring. Results: Three hundred ninety-one quantitative proteins were detected, and the expression trends of 7 proteins in the validation phase were consistent with that in the discovery phase. The expression level assessment results revealed that the expression of EFEMP1 and ApoA4 in the DKD group was significantly higher than those in DM and controls. Correlation analysis showed that EFEMP1 and APOA4 were positively correlated with urinary microalbumin and urinary albumin creatinine ratio and had excellent diagnostic values for distinguishing DKD from DM and controls. Conclusions: ApoA4 and EFEMP1 could serve as the early diagnosis markers of DKD. These findings provide a possibility for the development of a clinical diagnostic index that can efficiently distinguish DKD from DM in the near future.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"10 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646309538240805093732","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic kidney disease (DKD) is a common microvascular complication of diabetic mellitus (DM). At present, the early diagnosis of DKD mainly depends on microalbuminuria, which is prone to be affected by confounding factors such as urinary tract infections. Methods: To identify the more stable early diagnosis markers, the whole proteome in the circulating exosomes from controls, DM patients, and DKD patients was quantified by label-free proteomics analysis and then validated with parallel reaction monitoring. Results: Three hundred ninety-one quantitative proteins were detected, and the expression trends of 7 proteins in the validation phase were consistent with that in the discovery phase. The expression level assessment results revealed that the expression of EFEMP1 and ApoA4 in the DKD group was significantly higher than those in DM and controls. Correlation analysis showed that EFEMP1 and APOA4 were positively correlated with urinary microalbumin and urinary albumin creatinine ratio and had excellent diagnostic values for distinguishing DKD from DM and controls. Conclusions: ApoA4 and EFEMP1 could serve as the early diagnosis markers of DKD. These findings provide a possibility for the development of a clinical diagnostic index that can efficiently distinguish DKD from DM in the near future.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.