Ilda Hysa, Marthijn Tuinstra, Andrea Sciacchitano, Fulvio Scarano, Mark-Jan van der Meulen, Thomas Rockstroh, Eric W. M. Roosenboom
{"title":"A multi-directional redundant 3D-LPT system for ship–flight–deck wind interactions","authors":"Ilda Hysa, Marthijn Tuinstra, Andrea Sciacchitano, Fulvio Scarano, Mark-Jan van der Meulen, Thomas Rockstroh, Eric W. M. Roosenboom","doi":"10.1007/s00348-024-03867-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the past years, volumetric velocimetry measurements with helium-filled soap bubbles as tracer particles have been introduced in wind tunnel experiments and performed at large-scale, enabling the study of complex body aerodynamics. A limiting factor is identified in the field of wind engineering, where the flow around ships is frequently investigated. Considering multiple wind directions, the optical access for illumination and 3D imaging rapidly erodes the measurement regions due to shadows and incomplete triangulation. This work formalizes the concepts of volumetric losses and camera redundancy, and examines the performance of multi-directional illumination and imaging for monolithic and partitioned modes. The work is corroborated by experiments around a representative ship model. The study shows that a redundant system of cameras yields the largest measurement volume when partitioned into subsystems. The 3D measurements employing two illumination directions and seven cameras, yield the time-averaged velocity field around the ship. Regions of flow separation and recirculation are revealed, as well as sets of counter-rotating vortices in several stations from the ship bow to the flight–deck. The unsteady regime at the flight–deck is examined by proper orthogonal decomposition, indicating that the technique is suited for the analysis of large-scale unsteady flow features.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03867-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03867-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the past years, volumetric velocimetry measurements with helium-filled soap bubbles as tracer particles have been introduced in wind tunnel experiments and performed at large-scale, enabling the study of complex body aerodynamics. A limiting factor is identified in the field of wind engineering, where the flow around ships is frequently investigated. Considering multiple wind directions, the optical access for illumination and 3D imaging rapidly erodes the measurement regions due to shadows and incomplete triangulation. This work formalizes the concepts of volumetric losses and camera redundancy, and examines the performance of multi-directional illumination and imaging for monolithic and partitioned modes. The work is corroborated by experiments around a representative ship model. The study shows that a redundant system of cameras yields the largest measurement volume when partitioned into subsystems. The 3D measurements employing two illumination directions and seven cameras, yield the time-averaged velocity field around the ship. Regions of flow separation and recirculation are revealed, as well as sets of counter-rotating vortices in several stations from the ship bow to the flight–deck. The unsteady regime at the flight–deck is examined by proper orthogonal decomposition, indicating that the technique is suited for the analysis of large-scale unsteady flow features.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.