A multi-directional redundant 3D-LPT system for ship–flight–deck wind interactions

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2024-08-17 DOI:10.1007/s00348-024-03867-0
Ilda Hysa, Marthijn Tuinstra, Andrea Sciacchitano, Fulvio Scarano, Mark-Jan van der Meulen, Thomas Rockstroh, Eric W. M. Roosenboom
{"title":"A multi-directional redundant 3D-LPT system for ship–flight–deck wind interactions","authors":"Ilda Hysa,&nbsp;Marthijn Tuinstra,&nbsp;Andrea Sciacchitano,&nbsp;Fulvio Scarano,&nbsp;Mark-Jan van der Meulen,&nbsp;Thomas Rockstroh,&nbsp;Eric W. M. Roosenboom","doi":"10.1007/s00348-024-03867-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the past years, volumetric velocimetry measurements with helium-filled soap bubbles as tracer particles have been introduced in wind tunnel experiments and performed at large-scale, enabling the study of complex body aerodynamics. A limiting factor is identified in the field of wind engineering, where the flow around ships is frequently investigated. Considering multiple wind directions, the optical access for illumination and 3D imaging rapidly erodes the measurement regions due to shadows and incomplete triangulation. This work formalizes the concepts of volumetric losses and camera redundancy, and examines the performance of multi-directional illumination and imaging for monolithic and partitioned modes. The work is corroborated by experiments around a representative ship model. The study shows that a redundant system of cameras yields the largest measurement volume when partitioned into subsystems. The 3D measurements employing two illumination directions and seven cameras, yield the time-averaged velocity field around the ship. Regions of flow separation and recirculation are revealed, as well as sets of counter-rotating vortices in several stations from the ship bow to the flight–deck. The unsteady regime at the flight–deck is examined by proper orthogonal decomposition, indicating that the technique is suited for the analysis of large-scale unsteady flow features.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"65 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-024-03867-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03867-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the past years, volumetric velocimetry measurements with helium-filled soap bubbles as tracer particles have been introduced in wind tunnel experiments and performed at large-scale, enabling the study of complex body aerodynamics. A limiting factor is identified in the field of wind engineering, where the flow around ships is frequently investigated. Considering multiple wind directions, the optical access for illumination and 3D imaging rapidly erodes the measurement regions due to shadows and incomplete triangulation. This work formalizes the concepts of volumetric losses and camera redundancy, and examines the performance of multi-directional illumination and imaging for monolithic and partitioned modes. The work is corroborated by experiments around a representative ship model. The study shows that a redundant system of cameras yields the largest measurement volume when partitioned into subsystems. The 3D measurements employing two illumination directions and seven cameras, yield the time-averaged velocity field around the ship. Regions of flow separation and recirculation are revealed, as well as sets of counter-rotating vortices in several stations from the ship bow to the flight–deck. The unsteady regime at the flight–deck is examined by proper orthogonal decomposition, indicating that the technique is suited for the analysis of large-scale unsteady flow features.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于船-飞行-甲板风相互作用的多方向冗余 3D-LPT 系统
在过去的几年中,以充满氦气的肥皂泡作为示踪粒子进行的体积测速测量已被引入风洞实验,并在大规模范围内进行,从而使复杂的车身空气动力学研究成为可能。在风力工程领域,一个限制因素被发现,在该领域,船舶周围的气流经常被研究。考虑到多个风向,用于照明和三维成像的光学通道会因阴影和不完整的三角测量而迅速侵蚀测量区域。这项工作正式提出了体积损失和相机冗余的概念,并研究了单片模式和分区模式的多方向照明和成像性能。围绕一个具有代表性的船舶模型进行的实验证实了这项工作。研究结果表明,将冗余相机系统划分为子系统时,可获得最大的测量体积。三维测量采用了两个照明方向和七台相机,可获得船舶周围的时间平均速度场。在从船首到飞行甲板的几个位置上,可以看到气流分离和再循环区域,以及反向旋转的涡流组。通过适当的正交分解,对飞行甲板上的非稳态进行了研究,表明该技术适用于分析大规模非稳态流动特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Evolution of symmetrical microvortices in a generating microdroplet during neck breakage stage in an altered T-shaped microchannel Development of a neutralization reaction in a droplet that extracts chemically active surfactant from its homogeneous solution Wall pressure control of a 3D cavity with lateral apertures and wall proximity Multiscale analysis of the textural atomization process of a rocket engine-assisted coaxial jet Conditional statistics at the turbulent/non-turbulent interface of variable viscosity jets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1