Modeling Contact of Rough Surfaces with Bearing Ratio Curves

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-08-17 DOI:10.1007/s11249-024-01896-8
Michael Varenberg
{"title":"Modeling Contact of Rough Surfaces with Bearing Ratio Curves","authors":"Michael Varenberg","doi":"10.1007/s11249-024-01896-8","DOIUrl":null,"url":null,"abstract":"<div><p>Inaccurate modeling of rough surface contact still makes it difficult to predict adhesion, friction, wear, leakage, and electrical and thermal contact resistance, which often need to be managed in engineering practice. To address this challenge, a new model of contact between two rough surfaces described by their bearing ratio curves has been developed. This model is compared to a traditional equivalent surface model employing the combined roughness concept and is experimentally verified using the spectrometric analysis of the gap between two surfaces in contact. The results show that the model based on the bearing ratio curves provides a more accurate practical solution for the rough surface contact formed under relatively light load.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01896-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inaccurate modeling of rough surface contact still makes it difficult to predict adhesion, friction, wear, leakage, and electrical and thermal contact resistance, which often need to be managed in engineering practice. To address this challenge, a new model of contact between two rough surfaces described by their bearing ratio curves has been developed. This model is compared to a traditional equivalent surface model employing the combined roughness concept and is experimentally verified using the spectrometric analysis of the gap between two surfaces in contact. The results show that the model based on the bearing ratio curves provides a more accurate practical solution for the rough surface contact formed under relatively light load.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用承载比曲线模拟粗糙表面的接触情况
由于粗糙表面接触模型不准确,因此仍然难以预测工程实践中经常需要管理的粘附、摩擦、磨损、泄漏以及电气和热接触电阻。为了应对这一挑战,我们开发了一种新的粗糙表面接触模型,该模型由两个粗糙表面的轴承比曲线描述。该模型与采用综合粗糙度概念的传统等效表面模型进行了比较,并通过对两个接触表面之间间隙的光谱分析进行了实验验证。结果表明,基于轴承比曲线的模型为在相对较轻负载下形成的粗糙表面接触提供了更精确的实际解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Effects of Asperity Shapes and Normal Loads on Adhesive Wear Mechanisms Elastohydrodynamic Lubrication Mechanisms of Aqueous Polyethylene Glycols Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them? Improved Friction and Wear Performance Utilized with Aminoguanidine-Based Ionic Liquid Over Wide Temperature Range for Reciprocating Frictional Contact Surface Application of Oxide Wear Models to Radial Fretting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1