{"title":"Molecular classification of geriatric breast cancer displays distinct senescent subgroups of prognostic significance","authors":"Xia Wu, Mengxin Chen, Kang Liu, Yixin Wu, Yun Feng, Shiting Fu, Huaimeng Xu, Yongqi Zhao, Feilong Lin, Liang Lin, Shihui Ye, Junqiang Lin, Taiping Xiao, Wenhao Li, Meng Lou, Hongyu Lv, Ye Qiu, Ruifan Yu, Wenyan Chen, Mengyuan Li, Xu Feng, Zhongbing Luo, Lu Guo, Hao Ke, Limin Zhao","doi":"10.1016/j.omtn.2024.102309","DOIUrl":null,"url":null,"abstract":"Breast cancer in the elderly presents distinct biological characteristics and clinical treatment responses compared with cancer in younger patients. Comprehensive Geriatric Assessment is recommended for evaluating treatment efficacy in elderly cancer patients based on physiological classification. However, research on molecular classification in older cancer patients remains insufficient. In this study, we identified two subgroups with distinct senescent clusters among geriatric breast cancer patients through multi-omics analysis. Using various machine learning algorithms, we developed a comprehensive scoring model called “Sene_Signature,” which more accurately distinguished elderly breast cancer patients compared with existing methods and better predicted their prognosis. The Sene_Signature was correlated with tumor immune cell infiltration, as supported by single-cell transcriptomics, RNA sequencing, and pathological data. Furthermore, we observed increased drug responsiveness in patients with a high Sene_Signature to treatments targeting the epidermal growth factor receptor and cell-cycle pathways. We also established a user-friendly web platform to assist investigators in assessing Sene_Signature scores and predicting treatment responses for elderly breast cancer patients. In conclusion, we developed a novel model for evaluating prognosis and therapeutic responses, providing a potential molecular classification that assists in the pre-treatment assessment of geriatric breast cancer.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"43 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer in the elderly presents distinct biological characteristics and clinical treatment responses compared with cancer in younger patients. Comprehensive Geriatric Assessment is recommended for evaluating treatment efficacy in elderly cancer patients based on physiological classification. However, research on molecular classification in older cancer patients remains insufficient. In this study, we identified two subgroups with distinct senescent clusters among geriatric breast cancer patients through multi-omics analysis. Using various machine learning algorithms, we developed a comprehensive scoring model called “Sene_Signature,” which more accurately distinguished elderly breast cancer patients compared with existing methods and better predicted their prognosis. The Sene_Signature was correlated with tumor immune cell infiltration, as supported by single-cell transcriptomics, RNA sequencing, and pathological data. Furthermore, we observed increased drug responsiveness in patients with a high Sene_Signature to treatments targeting the epidermal growth factor receptor and cell-cycle pathways. We also established a user-friendly web platform to assist investigators in assessing Sene_Signature scores and predicting treatment responses for elderly breast cancer patients. In conclusion, we developed a novel model for evaluating prognosis and therapeutic responses, providing a potential molecular classification that assists in the pre-treatment assessment of geriatric breast cancer.
期刊介绍:
Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.