{"title":"AI-powered dining: text information extraction and machine learning for personalized menu recommendations and food allergy management","authors":"Samiha Brahimi","doi":"10.1007/s41870-024-02154-9","DOIUrl":null,"url":null,"abstract":"<p>Individuals with food allergies face limitations in social events and restaurant dining. Artificial intelligence solutions should be offered to this category. In this paper, a recommender system is proposed for the benefit of people with food allergies. The system aims to identify convenient options for the user in a restaurant/hotel menu. The system collects user’s allergy information and the restaurant menu, it extracts dishes names using a machine learning model. Then it conducts search about the recipes of these dishes and identify allergen-free ones. The system has been implemented as a mobile application involving a Naïve Bayes classification model and a web search API. The performance of the classifier was significant (accuracy 87%). Yet, an enhancement approach was introduced to increase the accuracy to 90%. In addition, an expert-driven test has been conducted and 98.5% of the system allergen identification was accurate in comparison with the original recipes used by restaurants’ chefs.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02154-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with food allergies face limitations in social events and restaurant dining. Artificial intelligence solutions should be offered to this category. In this paper, a recommender system is proposed for the benefit of people with food allergies. The system aims to identify convenient options for the user in a restaurant/hotel menu. The system collects user’s allergy information and the restaurant menu, it extracts dishes names using a machine learning model. Then it conducts search about the recipes of these dishes and identify allergen-free ones. The system has been implemented as a mobile application involving a Naïve Bayes classification model and a web search API. The performance of the classifier was significant (accuracy 87%). Yet, an enhancement approach was introduced to increase the accuracy to 90%. In addition, an expert-driven test has been conducted and 98.5% of the system allergen identification was accurate in comparison with the original recipes used by restaurants’ chefs.