Simon Pfahler, Peter Georg, Rudolf Schill, Maren Klever, Lars Grasedyck, Rainer Spang, Tilo Wettig
{"title":"Taming numerical imprecision by adapting the KL divergence to negative probabilities","authors":"Simon Pfahler, Peter Georg, Rudolf Schill, Maren Klever, Lars Grasedyck, Rainer Spang, Tilo Wettig","doi":"10.1007/s11222-024-10480-y","DOIUrl":null,"url":null,"abstract":"<p>The Kullback–Leibler (KL) divergence is frequently used in data science. For discrete distributions on large state spaces, approximations of probability vectors may result in a few small negative entries, rendering the KL divergence undefined. We address this problem by introducing a parameterized family of substitute divergence measures, the shifted KL (sKL) divergence measures. Our approach is generic and does not increase the computational overhead. We show that the sKL divergence shares important theoretical properties with the KL divergence and discuss how its shift parameters should be chosen. If Gaussian noise is added to a probability vector, we prove that the average sKL divergence converges to the KL divergence for small enough noise. We also show that our method solves the problem of negative entries in an application from computational oncology, the optimization of Mutual Hazard Networks for cancer progression using tensor-train approximations.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10480-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Kullback–Leibler (KL) divergence is frequently used in data science. For discrete distributions on large state spaces, approximations of probability vectors may result in a few small negative entries, rendering the KL divergence undefined. We address this problem by introducing a parameterized family of substitute divergence measures, the shifted KL (sKL) divergence measures. Our approach is generic and does not increase the computational overhead. We show that the sKL divergence shares important theoretical properties with the KL divergence and discuss how its shift parameters should be chosen. If Gaussian noise is added to a probability vector, we prove that the average sKL divergence converges to the KL divergence for small enough noise. We also show that our method solves the problem of negative entries in an application from computational oncology, the optimization of Mutual Hazard Networks for cancer progression using tensor-train approximations.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.