Test-time data augmentation: improving predictions of recurrent neural network models of composites

Petter Uvdal, Mohsen Mirkhalaf
{"title":"Test-time data augmentation: improving predictions of recurrent neural network models of composites","authors":"Petter Uvdal, Mohsen Mirkhalaf","doi":"arxiv-2409.02478","DOIUrl":null,"url":null,"abstract":"Recurrent Neural Networks (RNNs) have emerged as an interesting alternative\nto conventional material modeling approaches, particularly for nonlinear path\ndependent materials. Remarkable computational enhancements are obtained using\nRNNs compared to classical approaches such as the computational homogenization\nmethod. However, RNN predictive errors accumulate, leading to issues when\npredicting temporal dependencies in time series data. This study aims to\naddress and mitigate inaccuracies induced by neural networks in predicting path\ndependent plastic deformations of short fiber reinforced composite materials.\nWe propose using an approach of Test Time data Augmentation (TTA), which, to\nthe best of the authors knowledge, is previously untested in the context of\nRNNs. The method is based on augmenting the input test data using random\nrotations and subsequently rotating back the predicted output signal. By\naggregating the back rotated predictions, a more accurate prediction compared\nto individual predictions is obtained. Our analysis also demonstrates improved\nshape consistency between the prediction and the target pseudo time signal.\nAdditionally, this method provides an uncertainty estimation which correlates\nwith the absolute prediction error. The TTA approach is reproducible with\ndifferent randomly generated data augmentations, establishing a promising\nframework for optimizing predictions of deep learning models. We believe there\nare broader implications of the proposed method for various fields reliant on\naccurate predictive data driven modeling.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent Neural Networks (RNNs) have emerged as an interesting alternative to conventional material modeling approaches, particularly for nonlinear path dependent materials. Remarkable computational enhancements are obtained using RNNs compared to classical approaches such as the computational homogenization method. However, RNN predictive errors accumulate, leading to issues when predicting temporal dependencies in time series data. This study aims to address and mitigate inaccuracies induced by neural networks in predicting path dependent plastic deformations of short fiber reinforced composite materials. We propose using an approach of Test Time data Augmentation (TTA), which, to the best of the authors knowledge, is previously untested in the context of RNNs. The method is based on augmenting the input test data using random rotations and subsequently rotating back the predicted output signal. By aggregating the back rotated predictions, a more accurate prediction compared to individual predictions is obtained. Our analysis also demonstrates improved shape consistency between the prediction and the target pseudo time signal. Additionally, this method provides an uncertainty estimation which correlates with the absolute prediction error. The TTA approach is reproducible with different randomly generated data augmentations, establishing a promising framework for optimizing predictions of deep learning models. We believe there are broader implications of the proposed method for various fields reliant on accurate predictive data driven modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试时间数据扩增:改进复合材料递归神经网络模型的预测结果
循环神经网络(RNN)已成为传统材料建模方法的一种有趣的替代方法,特别是对于非线性路径依赖材料。与计算均质化方法等经典方法相比,使用 RNN 可显著提高计算能力。然而,RNN 的预测误差会不断累积,导致在预测时间序列数据的时间依赖性时出现问题。本研究旨在解决和减轻神经网络在预测短纤维增强复合材料的路径依赖性塑性变形时引起的不准确性。我们建议使用测试时间数据增强(TTA)方法,据作者所知,该方法以前从未在 RNN 中进行过测试。该方法的基础是使用随机旋转对输入测试数据进行增强,然后旋转回预测输出信号。通过对回旋预测进行汇总,可以获得比单个预测更准确的预测结果。我们的分析还表明,预测与目标伪时间信号之间的形状一致性得到了改善。此外,这种方法还提供了与绝对预测误差相关的不确定性估计。TTA 方法在不同随机生成的数据增强中具有可重复性,为优化深度学习模型的预测建立了一个前景广阔的框架。我们相信,所提出的方法对依赖精确预测数据驱动建模的各个领域都有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1