Chemical Reaction Neural Networks for Fitting Accelerated Rate Calorimetry Data

Saakaar Bhatnagar, Andrew Comerford, Zelu Xu, Davide Berti Polato, Araz Banaeizadeh, Alessandro Ferraris
{"title":"Chemical Reaction Neural Networks for Fitting Accelerated Rate Calorimetry Data","authors":"Saakaar Bhatnagar, Andrew Comerford, Zelu Xu, Davide Berti Polato, Araz Banaeizadeh, Alessandro Ferraris","doi":"arxiv-2408.11984","DOIUrl":null,"url":null,"abstract":"As the demand for lithium-ion batteries rapidly increases there is a need to\ndesign these cells in a safe manner to mitigate thermal runaway. Thermal\nrunaway in batteries leads to an uncontrollable temperature rise and\npotentially fires, which is a major safety concern. Typically, when modelling\nthe chemical kinetics of thermal runaway calorimetry data ( e.g. Accelerated\nRate Calorimetry (ARC)) is needed to determine the temperature-driven\ndecomposition kinetics. Conventional methods of fitting Arrhenius Ordinary\nDifferential Equation (ODE) thermal runaway models to Accelerated Rate\nCalorimetry (ARC) data make several assumptions that reduce the fidelity and\ngeneralizability of the obtained model. In this paper, Chemical Reaction Neural\nNetworks (CRNNs) are trained to fit the kinetic parameters of N-equation\nArrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are\nfound to be better approximations of the experimental data. The flexibility of\nthe method is demonstrated by experimenting with two-equation and four-equation\nmodels. Thermal runaway simulations are conducted in 3D using the obtained\nkinetic parameters, showing the applicability of the obtained thermal runaway\nmodels to large-scale simulations.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially fires, which is a major safety concern. Typically, when modelling the chemical kinetics of thermal runaway calorimetry data ( e.g. Accelerated Rate Calorimetry (ARC)) is needed to determine the temperature-driven decomposition kinetics. Conventional methods of fitting Arrhenius Ordinary Differential Equation (ODE) thermal runaway models to Accelerated Rate Calorimetry (ARC) data make several assumptions that reduce the fidelity and generalizability of the obtained model. In this paper, Chemical Reaction Neural Networks (CRNNs) are trained to fit the kinetic parameters of N-equation Arrhenius ODEs to ARC data obtained from a Molicel 21700 P45B. The models are found to be better approximations of the experimental data. The flexibility of the method is demonstrated by experimenting with two-equation and four-equation models. Thermal runaway simulations are conducted in 3D using the obtained kinetic parameters, showing the applicability of the obtained thermal runaway models to large-scale simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟合加速速率量热数据的化学反应神经网络
随着对锂离子电池需求的快速增长,有必要以安全的方式设计这些电池,以减少热失控。电池中的热失控会导致无法控制的温度上升,并可能引发火灾,这是一个重大的安全问题。通常情况下,在对热失控的化学动力学进行建模时,需要使用量热数据(如加速速率量热法 (ARC))来确定温度驱动的分解动力学。将阿伦尼乌斯常微分方程(ODE)热失控模型拟合到加速速率量热仪(ARC)数据的传统方法会做出一些假设,从而降低所获模型的保真度和通用性。本文训练了化学反应神经网络 (CRNN),以拟合 N 方程阿伦尼乌斯 ODE 的动力学参数和从 Molicel 21700 P45B 获取的 ARC 数据。结果发现这些模型能更好地逼近实验数据。通过对两方程和四方程模型的实验,证明了该方法的灵活性。利用所获得的动力学参数进行了三维热失控模拟,表明所获得的热失控模型适用于大规模模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1