Inverse design of Non-parameterized Ventilated Acoustic Resonator via Variational Autoencoder with Acoustic Response-encoded Latent Space

Min Woo Cho, Seok Hyeon Hwang, Jun-Young Jang, Jin Yeong Song, Sun-kwang Hwang, Kyoung Je Cha, Dong Yong Park, Kyungjun Song, Sang Min Park
{"title":"Inverse design of Non-parameterized Ventilated Acoustic Resonator via Variational Autoencoder with Acoustic Response-encoded Latent Space","authors":"Min Woo Cho, Seok Hyeon Hwang, Jun-Young Jang, Jin Yeong Song, Sun-kwang Hwang, Kyoung Je Cha, Dong Yong Park, Kyungjun Song, Sang Min Park","doi":"arxiv-2408.05917","DOIUrl":null,"url":null,"abstract":"Ventilated acoustic resonator(VAR), a type of acoustic metamaterial, emerge\nas an alternative for sound attenuation in environments that require\nventilation, owing to its excellent low-frequency attenuation performance and\nflexible shape adaptability. However, due to the non-linear acoustic responses\nof VARs, the VAR designs are generally obtained within a limited parametrized\ndesign space, and the design relies on the iteration of the numerical\nsimulation which consumes a considerable amount of computational time and\nresources. This paper proposes an acoustic response-encoded variational\nautoencoder (AR-VAE), a novel variational autoencoder-based generative design\nmodel for the efficient and accurate inverse design of VAR even with\nnon-parametrized designs. The AR-VAE matches the high-dimensional acoustic\nresponse with the VAR cross-section image in the dimension-reduced latent\nspace, which enables the AR-VAE to generate various non-parametrized VAR\ncross-section images with the target acoustic response. AR-VAE generates\nnon-parameterized VARs from target acoustic responses, which show a 25-fold\nreduction in mean squared error compared to conventional deep learning-based\nparameter searching methods while exhibiting lower average mean squared error\nand peak frequency variance. By combining the inverse-designed VARs by AR-VAE,\nmulti-cavity VAR was devised for broadband and multitarget peak frequency\nattenuation. The proposed design method presents a new approach for structural\ninverse-design with a high-dimensional non-linear physical response.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ventilated acoustic resonator(VAR), a type of acoustic metamaterial, emerge as an alternative for sound attenuation in environments that require ventilation, owing to its excellent low-frequency attenuation performance and flexible shape adaptability. However, due to the non-linear acoustic responses of VARs, the VAR designs are generally obtained within a limited parametrized design space, and the design relies on the iteration of the numerical simulation which consumes a considerable amount of computational time and resources. This paper proposes an acoustic response-encoded variational autoencoder (AR-VAE), a novel variational autoencoder-based generative design model for the efficient and accurate inverse design of VAR even with non-parametrized designs. The AR-VAE matches the high-dimensional acoustic response with the VAR cross-section image in the dimension-reduced latent space, which enables the AR-VAE to generate various non-parametrized VAR cross-section images with the target acoustic response. AR-VAE generates non-parameterized VARs from target acoustic responses, which show a 25-fold reduction in mean squared error compared to conventional deep learning-based parameter searching methods while exhibiting lower average mean squared error and peak frequency variance. By combining the inverse-designed VARs by AR-VAE, multi-cavity VAR was devised for broadband and multitarget peak frequency attenuation. The proposed design method presents a new approach for structural inverse-design with a high-dimensional non-linear physical response.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过声学响应编码潜空间变异自动编码器反向设计非参数化通风声学谐振器
通风声共振(VAR)是一种声学超材料,由于其出色的低频衰减性能和灵活的形状适应性,在需要通风的环境中成为一种声音衰减的替代方法。然而,由于 VAR 的非线性声学响应,VAR 的设计通常只能在有限的参数化设计空间内获得,而且设计依赖于数值模拟的迭代,这将消耗大量的计算时间和资源。本文提出了一种声学响应编码变异自动编码器(AR-VAE),这是一种基于变异自动编码器的新型生成式设计模型,即使在非参数化设计的情况下也能高效、准确地进行 VAR 反设计。AR-VAE 将高维声学响应与降维潜在空间中的 VAR 横截面图像相匹配,从而使 AR-VAE 能够生成具有目标声学响应的各种非参数化 VAR 横截面图像。与基于深度学习的传统参数搜索方法相比,AR-VAE 从目标声学响应生成的非参数化 VAR 的均方误差降低了 25 倍,同时平均均方误差和峰值频率方差也更低。通过 AR-VAE 将逆向设计的 VAR 组合在一起,设计出了多腔 VAR,用于宽带和多目标峰值频率衰减。所提出的设计方法为具有高维非线性物理响应的结构逆设计提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1