Molecular Insights into the Transformation of Dissolved Organic Matter in a Full-Scale Wastewater Treatment Plant

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2024-08-16 DOI:10.1021/acsestwater.4c0053410.1021/acsestwater.4c00534
Yuan Wen, Lei Dong, Jihong Xu, Xin Zhang, Lushi Lian* and Xiaohong Guan, 
{"title":"Molecular Insights into the Transformation of Dissolved Organic Matter in a Full-Scale Wastewater Treatment Plant","authors":"Yuan Wen,&nbsp;Lei Dong,&nbsp;Jihong Xu,&nbsp;Xin Zhang,&nbsp;Lushi Lian* and Xiaohong Guan,&nbsp;","doi":"10.1021/acsestwater.4c0053410.1021/acsestwater.4c00534","DOIUrl":null,"url":null,"abstract":"<p >The compounds generated during wastewater treatment processes might increase the complexity and chemical risk assessment of wastewater-derived dissolved organic matter (DOM) released into receiving water. This study applied Fourier transform ion cyclotron resonance mass spectrometry to investigate the dynamic changes in wastewater composition at the molecular level in a full-scale municipal wastewater treatment plant (WWTP). Approximately 63.1% of the detected molecules in the effluent were derived from the influent. N/S-containing molecules were more effectively removed than CHO molecules in the studied WWTP. The dealkylation and oxygen addition reactions of N-containing molecules, along with the predominant N-addition reactions of removed molecules observed in anaerobic and oxic tanks, contributed to the higher N/C<sub>wa</sub> in the effluent than in the influent. However, the S-containing molecules could be effectively removed via S-loss reactions in the anoxic/anaerobic/oxic (inverted A/A/O) processes. Dealkylation and oxygen addition reactions were found to be the predominant reaction types in all tanks of the inverted A/A/O processes. More oxidized molecules with higher aromaticity and unsaturation degree were observed in the effluent than in the influent. Our findings provide a comprehensive view of the transformation of wastewater DOM in a full-scale WWTP and offer valuable insights into effluent water quality.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"4 9","pages":"4228–4238 4228–4238"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The compounds generated during wastewater treatment processes might increase the complexity and chemical risk assessment of wastewater-derived dissolved organic matter (DOM) released into receiving water. This study applied Fourier transform ion cyclotron resonance mass spectrometry to investigate the dynamic changes in wastewater composition at the molecular level in a full-scale municipal wastewater treatment plant (WWTP). Approximately 63.1% of the detected molecules in the effluent were derived from the influent. N/S-containing molecules were more effectively removed than CHO molecules in the studied WWTP. The dealkylation and oxygen addition reactions of N-containing molecules, along with the predominant N-addition reactions of removed molecules observed in anaerobic and oxic tanks, contributed to the higher N/Cwa in the effluent than in the influent. However, the S-containing molecules could be effectively removed via S-loss reactions in the anoxic/anaerobic/oxic (inverted A/A/O) processes. Dealkylation and oxygen addition reactions were found to be the predominant reaction types in all tanks of the inverted A/A/O processes. More oxidized molecules with higher aromaticity and unsaturation degree were observed in the effluent than in the influent. Our findings provide a comprehensive view of the transformation of wastewater DOM in a full-scale WWTP and offer valuable insights into effluent water quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对全规模污水处理厂中溶解有机物转化的分子认识
废水处理过程中产生的化合物可能会增加废水中溶解有机物(DOM)释放到受纳水体中的复杂性和化学风险评估。本研究采用傅立叶变换离子回旋共振质谱法研究了大规模城市污水处理厂(WWTP)中废水成分在分子水平上的动态变化。在废水中检测到的分子中,约有 63.1% 来自进水。在所研究的污水处理厂中,含 N/S 分子的去除率高于 CHO 分子。含 N 分子的脱烷基和加氧反应,以及在厌氧池和缺氧池中观察到的被去除分子的主要 N 加成反应,导致出水中的 N/Cwa 高于进水中的 N/Cwa。不过,在缺氧/厌氧/缺氧(倒置 A/A/O)过程中,含 S 分子可通过 S 损失反应有效去除。在所有倒置 A/A/O 过程中,脱烷基和加氧反应都是最主要的反应类型。与进水相比,出水中出现了更多芳香度和不饱和度更高的氧化分子。我们的研究结果全面展示了全规模污水处理厂中废水 DOM 的转化过程,并为了解出水水质提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information ACS ES&T Water Presents the 2023 Excellence in Review Awards Advancing Sustainable Water Quality Monitoring and Remediation in Malaysia: Innovative Analytical Solutions for Detecting and Removing Emerging Contaminants Correction to “Sorption Behavior of Trace Organic Chemicals on Carboxylated Polystyrene Nanoplastics”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1