A coarse-grained bonded particle model for large-scale rock simulation

Chengshun Shang , Liping Li , Kaiwei Chu , Zongqing Zhou , Guillermo Casas , Wenfeng Tu , Yuxue Chen , Shangqu Sun
{"title":"A coarse-grained bonded particle model for large-scale rock simulation","authors":"Chengshun Shang ,&nbsp;Liping Li ,&nbsp;Kaiwei Chu ,&nbsp;Zongqing Zhou ,&nbsp;Guillermo Casas ,&nbsp;Wenfeng Tu ,&nbsp;Yuxue Chen ,&nbsp;Shangqu Sun","doi":"10.1016/j.rockmb.2024.100133","DOIUrl":null,"url":null,"abstract":"<div><p>For solving the computationally intensive problem encountered by the discrete element method (DEM) in simulating large-scale engineering problems, it is essential to establish a numerical model that can effectively simulate large-scale rocks. In this study, the coarse-graining effect of a linear-Mindlin with bonding model was studied in the unconfined compression strength (UCS) and Brazilian tensile strength (BTS) tests. We found that the main reason for the coarse-graining effect of the BTS tests is that the type I fracture toughness is positively correlated with the size of the particles. Based on the results analysis and fracture mechanics, the coarse-grained (CG) modeling theory was combined with a bonded particle model (BPM) for the first time and a coarse-grained bonded particle model (CG-BPM) was developed, which can be effectively used to model the tensile strength of large-scale rocks with different particle sizes. The excavation damage zone (EDZ) in an underground research laboratory (URL) was selected as an application case, which shows that the coarse-grained bonding model presented in this paper is more accurate and reliable than the traditional one in large-scale rock simulation, at least in the scenario where tensile failure is dominant.</p></div>","PeriodicalId":101137,"journal":{"name":"Rock Mechanics Bulletin","volume":"3 4","pages":"Article 100133"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773230424000325/pdfft?md5=045e7bf747427e30a17743496d88c4f5&pid=1-s2.0-S2773230424000325-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rock Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773230424000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For solving the computationally intensive problem encountered by the discrete element method (DEM) in simulating large-scale engineering problems, it is essential to establish a numerical model that can effectively simulate large-scale rocks. In this study, the coarse-graining effect of a linear-Mindlin with bonding model was studied in the unconfined compression strength (UCS) and Brazilian tensile strength (BTS) tests. We found that the main reason for the coarse-graining effect of the BTS tests is that the type I fracture toughness is positively correlated with the size of the particles. Based on the results analysis and fracture mechanics, the coarse-grained (CG) modeling theory was combined with a bonded particle model (BPM) for the first time and a coarse-grained bonded particle model (CG-BPM) was developed, which can be effectively used to model the tensile strength of large-scale rocks with different particle sizes. The excavation damage zone (EDZ) in an underground research laboratory (URL) was selected as an application case, which shows that the coarse-grained bonding model presented in this paper is more accurate and reliable than the traditional one in large-scale rock simulation, at least in the scenario where tensile failure is dominant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模岩石模拟的粗粒粘结颗粒模型
为了解决离散元法(DEM)在模拟大型工程问题时遇到的计算密集型问题,必须建立一种能够有效模拟大型岩石的数值模型。本研究在无侧限压缩强度(UCS)和巴西抗拉强度(BTS)试验中研究了带粘结的线性-明德林模型的粗粒化效应。我们发现,BTS 试验产生粗粒化效应的主要原因是 I 型断裂韧性与颗粒大小呈正相关。在结果分析和断裂力学的基础上,首次将粗粒(CG)建模理论与粘结颗粒模型(BPM)相结合,建立了粗粒粘结颗粒模型(CG-BPM),可有效用于不同粒径大尺度岩石的抗拉强度建模。本文选取了某地下研究实验室(URL)的开挖破坏区(EDZ)作为应用案例,结果表明,在大尺度岩石模拟中,至少在拉伸破坏占主导地位的情况下,本文提出的粗粒粘结模型比传统模型更加准确可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Viscoelastic plastic interaction of tunnel support and strain-softening rock mass considering longitudinal effect Shear behavior and dilatancy of an artificial hard-matrix bimrock: An experimental study focusing on the role of blocky structure Effects of joint persistence and testing conditions on cyclic shear behavior of en-echelon joints under CNS conditions Discontinuous deformation analysis for subsidence of fractured formations under seepage: A case study Experimental behavior and fracture prediction of a novel high-strength and high-toughness steel subjected to tension and shear loading tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1