Renata Pacheco Quevedo , Daniel Andrade Maciel , Mariane Souza Reis , Camilo Daleles Rennó , Luciano Vieira Dutra , Clódis de Oliveira Andrades-Filho , Andrés Velástegui-Montoya , Tingyu Zhang , Thales Sehn Körting , Liana Oighenstein Anderson
{"title":"Land use and land cover changes without invalid transitions: A case study in a landslide-affected area","authors":"Renata Pacheco Quevedo , Daniel Andrade Maciel , Mariane Souza Reis , Camilo Daleles Rennó , Luciano Vieira Dutra , Clódis de Oliveira Andrades-Filho , Andrés Velástegui-Montoya , Tingyu Zhang , Thales Sehn Körting , Liana Oighenstein Anderson","doi":"10.1016/j.rsase.2024.101314","DOIUrl":null,"url":null,"abstract":"<div><p>Land use and land cover (LULC) analysis provides valuable information to understand environmental changes and their effects on landslide occurrence. However, LULC time series can be affected by errors in classifications that lead to invalid transitions and, therefore, to misinterpretations. One solution is to include temporal approaches that reduce the effects of invalid transitions. Here, we aimed to evaluate how such methods can improve the LULC analysis for a landslide-affected area. For that, we integrated the Random Forest (RF) class likelihoods with the temporal approach provided by the Compound Maximum a Posteriori (CMAP) algorithm, named here as RF-CMAP. Results from RF-CMAP were compared to those obtained from the traditional RF in a post-classification comparison approach. Although both methods presented high performance, with overall accuracy (OA) values greater than 0.87, RF-CMAP reached higher OA than RF for all the analysed years and corrected 99.92 km<sup>2</sup> (12% of the total area) of invalid transitions presented by the traditional RF. Furthermore, RF-CMAP was capable of correctly classifying more areas than RF in landslides (e.g., 66% and 21% for RF-CMAP and RF in 2000, respectively). Finally, this study contributes to exploring the integration between RF and CMAP algorithms to avoid invalid transitions and to assess how the existence of LULC invalid transitions can impact subsequent analyses.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101314"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524001782/pdfft?md5=08c7752e03b68275e5732b08895efa93&pid=1-s2.0-S2352938524001782-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524001782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Land use and land cover (LULC) analysis provides valuable information to understand environmental changes and their effects on landslide occurrence. However, LULC time series can be affected by errors in classifications that lead to invalid transitions and, therefore, to misinterpretations. One solution is to include temporal approaches that reduce the effects of invalid transitions. Here, we aimed to evaluate how such methods can improve the LULC analysis for a landslide-affected area. For that, we integrated the Random Forest (RF) class likelihoods with the temporal approach provided by the Compound Maximum a Posteriori (CMAP) algorithm, named here as RF-CMAP. Results from RF-CMAP were compared to those obtained from the traditional RF in a post-classification comparison approach. Although both methods presented high performance, with overall accuracy (OA) values greater than 0.87, RF-CMAP reached higher OA than RF for all the analysed years and corrected 99.92 km2 (12% of the total area) of invalid transitions presented by the traditional RF. Furthermore, RF-CMAP was capable of correctly classifying more areas than RF in landslides (e.g., 66% and 21% for RF-CMAP and RF in 2000, respectively). Finally, this study contributes to exploring the integration between RF and CMAP algorithms to avoid invalid transitions and to assess how the existence of LULC invalid transitions can impact subsequent analyses.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems