Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles

IF 7 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL International Journal of Rock Mechanics and Mining Sciences Pub Date : 2024-09-13 DOI:10.1016/j.ijrmms.2024.105906
{"title":"Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles","authors":"","doi":"10.1016/j.ijrmms.2024.105906","DOIUrl":null,"url":null,"abstract":"<div><p>Freeze-thaw cycles are recognized as one of the key triggers for some major landslides in cold regions around the world. Though the effects of freeze-thaw cycles on the rock strength degradation have been studied extensively, little effort has been made to qualitatively evaluate how it contributes to the evolution from a stable rock slope to a large-scale mass movement. In this study, we use a discrete element-based numerical model to simulate the entire process of the initiation of landslide under the action of freeze-thaw cycles in a slope with randomly distributed initial cracks. The main goal of this work is to quantitatively describe the landslide evolution process regarding the slope displacement, crack propagation, stress chain and load-bearing structure. Our results show the essence of the displacement evolution of a landslide subjected to freeze-thaw cycles; namely frost heave pressure induces the generation of new cracks, leading to the failure and reconstruction of the load-bearing structure of the slope. Deep-seated landslides can occur when the slope is crossed by a fault; otherwise, the slope is prone to surface erosion or shallow landslides.</p></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002715","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Freeze-thaw cycles are recognized as one of the key triggers for some major landslides in cold regions around the world. Though the effects of freeze-thaw cycles on the rock strength degradation have been studied extensively, little effort has been made to qualitatively evaluate how it contributes to the evolution from a stable rock slope to a large-scale mass movement. In this study, we use a discrete element-based numerical model to simulate the entire process of the initiation of landslide under the action of freeze-thaw cycles in a slope with randomly distributed initial cracks. The main goal of this work is to quantitatively describe the landslide evolution process regarding the slope displacement, crack propagation, stress chain and load-bearing structure. Our results show the essence of the displacement evolution of a landslide subjected to freeze-thaw cycles; namely frost heave pressure induces the generation of new cracks, leading to the failure and reconstruction of the load-bearing structure of the slope. Deep-seated landslides can occur when the slope is crossed by a fault; otherwise, the slope is prone to surface erosion or shallow landslides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寒冷地区山体滑坡的引发机制:冻融循环的作用
冻融循环被认为是世界各地寒冷地区一些重大山体滑坡的主要诱因之一。尽管人们已经广泛研究了冻融循环对岩石强度退化的影响,但很少有人对冻融循环如何促使稳定的岩石边坡演变为大规模的大规模运动进行定性评估。在本研究中,我们使用基于离散元的数值模型模拟了在冻融循环作用下,初始裂缝随机分布的斜坡发生滑坡的全过程。这项工作的主要目标是定量描述滑坡的演变过程,包括斜坡位移、裂缝扩展、应力链和承载结构。我们的研究结果表明了受冻融循环影响的滑坡位移演变的本质,即冻土隆起压力诱发新裂缝的产生,从而导致滑坡的破坏和承重结构的重建。当斜坡被断层穿越时,就会发生深层滑坡;反之,斜坡就容易发生表面侵蚀或浅层滑坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.00
自引率
5.60%
发文量
196
审稿时长
18 weeks
期刊介绍: The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.
期刊最新文献
Implicit hydromechanical representation of fractures using a continuum approach Damage quantification and failure prediction of rock: A novel approach based on energy evolution obtained from infrared radiation and acoustic emission A coarse-grained approach to modeling gas transport in swelling porous media Failure characteristics and energy evolution process of delayed and instantaneous basalt rockburst under true triaxial conditions Fractal contact and asperities coalescence of rock joints under normal loading: Insights from pressure-sensitive film measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1