{"title":"Lateral stiffness of modular steel joint with semi-rigid bolted intra-module connection","authors":"","doi":"10.1016/j.jobe.2024.110668","DOIUrl":null,"url":null,"abstract":"<div><p>In contrast to the beam-column joints found in traditional assembled steel structures, modular steel structures feature inter-module and intra-module connections within their joints. While existing research has largely focused on the mechanical properties of inter-module connections, the impact of intra-module connection stiffness on the performance of modular steel joints remains unclear. This study introduces a novel corner-fitting-reinforced fully bolted joint specifically designed for modular steel structures. A series of experiments were conducted, including a flexural test on bolted intra-module connection to determine its initial rotational stiffness, and four groups of lateral static tests on full-scale modular steel joints with varying intra-module connection stiffnesses. These tests aimed to characterize mechanical properties such as load-carrying capacity, lateral stiffness, strain development, and ductility. The study elucidates the influence of intra-module connection stiffness on the lateral stiffness of modular steel joints. Furthermore, a refined finite-element (FE) model of the corner-fitting-reinforced fully bolted joint was developed. Simulation results showed good agreement with experimental findings., with an average error of less than 10 % for ultimate load-carrying capacity prediction. The FE model also, analyzed the stress-strain development of the corner fitting throughout the process. The study establishes a theoretical analysis model for the corner-fitting-reinforced fully bolted joint and derives a theoretical formula for the initial lateral stiffness of the modular steel joint, considering semi-rigid intra-module connections. This formula aligns well with both experimental and FE results, with a maximum error of 15 %. Finally, the study delves into the force-transfer mechanism of the corner-fitting-reinforced fully bolted joint, providing valuable insights for its design.</p></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224022368","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to the beam-column joints found in traditional assembled steel structures, modular steel structures feature inter-module and intra-module connections within their joints. While existing research has largely focused on the mechanical properties of inter-module connections, the impact of intra-module connection stiffness on the performance of modular steel joints remains unclear. This study introduces a novel corner-fitting-reinforced fully bolted joint specifically designed for modular steel structures. A series of experiments were conducted, including a flexural test on bolted intra-module connection to determine its initial rotational stiffness, and four groups of lateral static tests on full-scale modular steel joints with varying intra-module connection stiffnesses. These tests aimed to characterize mechanical properties such as load-carrying capacity, lateral stiffness, strain development, and ductility. The study elucidates the influence of intra-module connection stiffness on the lateral stiffness of modular steel joints. Furthermore, a refined finite-element (FE) model of the corner-fitting-reinforced fully bolted joint was developed. Simulation results showed good agreement with experimental findings., with an average error of less than 10 % for ultimate load-carrying capacity prediction. The FE model also, analyzed the stress-strain development of the corner fitting throughout the process. The study establishes a theoretical analysis model for the corner-fitting-reinforced fully bolted joint and derives a theoretical formula for the initial lateral stiffness of the modular steel joint, considering semi-rigid intra-module connections. This formula aligns well with both experimental and FE results, with a maximum error of 15 %. Finally, the study delves into the force-transfer mechanism of the corner-fitting-reinforced fully bolted joint, providing valuable insights for its design.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.