A fractional derivative model of the dynamic of dengue transmission based on seasonal factors in Thailand

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Journal of Computational and Applied Mathematics Pub Date : 2024-09-07 DOI:10.1016/j.cam.2024.116256
{"title":"A fractional derivative model of the dynamic of dengue transmission based on seasonal factors in Thailand","authors":"","doi":"10.1016/j.cam.2024.116256","DOIUrl":null,"url":null,"abstract":"<div><p>Climate variability affects the changes in controlling diseases transferred by insects. An increase in the population, the growth of communities, and a lack of public health infrastructure bring about the return of diseases of which insects are carriers, one of the illness issues. Therefore, the disease control is significant to help reduce the burden on the government and strengthen the country's public health structure. This research proposes a novel approach to modeling dengue fever dynamics, we employ a fractional derivative model with the Atangana–Baleanu–Caputo derivative, which offers a more accurate representation of real-world disease dynamics compared to traditional integer-order models. Basic qualifications are proposed. Equilibrium points and basic reproduction numbers are analyzed. The next-generation matrix method is used to identify the transmission. Besides, parameter sensitivity analysis is performed to learn about factors affecting input parameter values' effects on the basic reproduction number. It was found that the most common parameter affecting the transmission was the biting rate of mosquitoes was 1. In addition, the existence and uniqueness of the solution are examined using the Banach fixed point theorem. The Toufik–Atangana method is used for the numerical examination of a fractional version of the proposed model. We compared different values of fractional-order α=0.965, 0.975, 0.985, 0.995 and 1 it was found that when the order of derivatives decreases, the transmission shall decrease accordingly. This research provides valuable insights for developing effective control strategies to reduce the burden of dengue fever and strengthen public health systems.</p></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Climate variability affects the changes in controlling diseases transferred by insects. An increase in the population, the growth of communities, and a lack of public health infrastructure bring about the return of diseases of which insects are carriers, one of the illness issues. Therefore, the disease control is significant to help reduce the burden on the government and strengthen the country's public health structure. This research proposes a novel approach to modeling dengue fever dynamics, we employ a fractional derivative model with the Atangana–Baleanu–Caputo derivative, which offers a more accurate representation of real-world disease dynamics compared to traditional integer-order models. Basic qualifications are proposed. Equilibrium points and basic reproduction numbers are analyzed. The next-generation matrix method is used to identify the transmission. Besides, parameter sensitivity analysis is performed to learn about factors affecting input parameter values' effects on the basic reproduction number. It was found that the most common parameter affecting the transmission was the biting rate of mosquitoes was 1. In addition, the existence and uniqueness of the solution are examined using the Banach fixed point theorem. The Toufik–Atangana method is used for the numerical examination of a fractional version of the proposed model. We compared different values of fractional-order α=0.965, 0.975, 0.985, 0.995 and 1 it was found that when the order of derivatives decreases, the transmission shall decrease accordingly. This research provides valuable insights for developing effective control strategies to reduce the burden of dengue fever and strengthen public health systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于季节因素的泰国登革热传播动态分数导数模型
气候多变会影响昆虫传播疾病的控制变化。人口的增加、社区的发展以及公共卫生基础设施的缺乏导致昆虫携带的疾病回潮,这是疾病问题之一。因此,疾病控制对于减轻政府负担、加强国家公共卫生结构意义重大。本研究提出了一种建立登革热动态模型的新方法,我们采用了阿坦加纳-巴莱亚努-卡普托导数的分数导数模型,与传统的整数阶模型相比,它能更准确地反映真实世界的疾病动态。提出了基本限定条件。分析了平衡点和基本繁殖数。使用下一代矩阵法确定传播。此外,还进行了参数敏感性分析,以了解输入参数值对基本繁殖数的影响因素。结果发现,影响传播的最常见参数是蚊子的叮咬率为 1。此外,还利用巴拿赫定点定理检验了解的存在性和唯一性。Toufik-Atangana 方法用于对拟议模型的分数版本进行数值检验。我们比较了分数阶数 α=0.965, 0.975, 0.985, 0.995 和 1 的不同值,发现当导数阶数减少时,传输将相应减少。这项研究为制定有效的控制策略以减轻登革热的负担和加强公共卫生系统提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
期刊最新文献
Third order two-step Runge–Kutta–Chebyshev methods Finite difference methods for stochastic Helmholtz equation driven by white noise Poisson noise removal based on non-convex hybrid regularizers Robust H∞ control for LFC of discrete T–S fuzzy MAPS with DFIG and time-varying delays Fading regularization method for an inverse boundary value problem associated with the biharmonic equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1