Limei Zhang , Aihui Xie , Jingxian Ma , Huilin Liu , Changchun Zeng
{"title":"Unveiling Cuproptosis: Mechanistic insights, roles, and leading advances in oncology","authors":"Limei Zhang , Aihui Xie , Jingxian Ma , Huilin Liu , Changchun Zeng","doi":"10.1016/j.bbcan.2024.189180","DOIUrl":null,"url":null,"abstract":"<div><p>Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.</p></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 6","pages":"Article 189180"},"PeriodicalIF":9.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001112","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.